

Energized Text Books facilitate the students in understanding the concepts clearly, accurately and effectively. Content in the QR Codes can be read with the help of any smart phone or can as well be presented on the Screen with LCD projector/K-Yan projector. The content in the QR Codes is mostly in the form of videos, animations and slides, and is an additional information to what is already there in the text books.

This additional content will help the students understand the concepts clearly and will also help the teachers in making their interaction with the students more meaningful. At the end of each chapter, questions are provided in a separate QR Code which can assess the level of learning outcomes achieved by the students. We expect the students and the teachers to use the content available in the QR Codes optimally and make their class room interaction more enjoyable and educative.
Let us know how to use QR codes
In this textbook, you will see many printed QR (Quick Response) codes, such as
Use your mobile phone or tablet or computer to see interesting lessons, videos, documents, etc. linked to the QR code.

Step	Description
A.	Use A
1. 2. 3. 	Click on Play Store on your mobile/ tablet. In the search bar type DIKSHA. will appear on your screen. Click Install After successful download and installation, Click Open Choose your prefered Language - Click English Click Continue Select Student/ Teacher (as the case may be) and Click on Continue your book Click on the search icon \square and type the code printed below the QR code, in the search bar \qquad A list of linked topics is displayed Click on any link to view the desired content
B.	Use Computer to view content linked to QR code:
1.	Go to https://diksha.gov.in/telangana Click on Explore DIKSHA-TELANGANA Enter the code printed below the QR code in the browser search bar (O) A list of linked topics is displayed Click on any link to view the desired content

Mathematics Class VII (Part-2)

TEXTBOOK DEVELOPMENT \& PUBLISHING COMMITTEE

Chief Production Officer

Executive Chief Organiser

Organising Incharge :

Asst. Organising Incharge

Smt.B. Seshu Kumari

Director, SCERT, Hyderabad.

Sri. B. Sudhakar,

Director, Govt. Text Book Press, Hyderabad.

Dr. Nannuru Upender Reddy
Prof. Curriculum \& Text Book Department, SCERT, Hyderabad.

Sri. K. Yadagiri
Lecturer, SCERT, Hyderabad.

QR CODE TEAM

Published by:
The Government of Telangana, Hyderabad

© Government of Telangana, Hyderabad.
First Published 2012
New Impressions 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022

All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means without the prior permission in writing of the publisher, nor be otherwise circulated in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.
The copy right holder of this book is the Director of School Education, Hyderabad, Telangana.

This Book has been printed on 70 G.S.M. Maplitho Title Page 200 G.S.M. White Art Card

$$
\begin{aligned}
& \text { Free distribution by Government of Telangana- 2022-23 }
\end{aligned}
$$

Printed in India
at the Telangana Govt. Text Book Press,
Mint Compound, Hyderabad,
Telangana.

Textbook Development Committee

Members
Dr. P. Ramesh, Lecturer, Govt. IASE, Nellore
Sri. M. Ramanjaneyulu, Lecturer, DIET, Vikarabad, Ranga Reddy
Sri. T.V. Rama Kumar, HM, ZPPHS, Mulumudi, Nellore
Sri. P. Ashok, HM, ZPHS, Kumari, Adilabad
Sri. P. Anthony Reddy, HM, St. Peter's High School, R.N.Peta, Nellore
Sri. S. Prasada Babu, PGT, APTWR School, Chandrashekarapuram, Nellore
Sri. Kakulavaram Rajender Reddy, SA, UPS Thimmapur, Chandampet, Nalgonda
Sri. G. V. B. Suryanarayana Raju, SA, Municipal High School, Kaspa, Vizianagaram
Sri. S. Narasimha Murthy, SA, ZPHS, Mudivarthipalem, Nellore
Sri. P. Suresh Kumar, SA, GHS, Vijayanagar Colony, Hyderabad
Sri. K.V. Sunder Reddy, SA, ZPHS, Thakkasila, Alampur Mdl., Mababoobnagar
Sri. G. Venkateshwarlu, SA, ZPHS, Vemulakota, Prakasham
Sri. Ch. Ramesh, SA, UPS, Nagaram (M), Guntur.
Sri. P.D.L. Ganapathi Sharma, SA, GHS, Jamisthanpur, Manikeshwar Nagar, Hyderabad Co-ordinators
Sri. K. Bramhaiah, Professor, SCERT, Hyderabad
Sri. Kakulavaram Rajender Reddy, SA, UPS Thimmapur, Chandampet, Nalgonda

Editors

Smt.B. Seshu Kumari, Director, SCERT, Hyderabad.
Sri. K. Bramhaiah, Professor, SCERT, Hyderabad
Sri. P. Adinarayana, Retd., Lecturer, New Science College, Ameerpet, Hyderabad Chairperson for Position Paper and Mathematics Curriculum and Textbook Development
Professor V. Kannan,Dept. of Mathematics and Statistics, University of Hyderabad Chief Advisor
Dr. H. K. Dewan, Education Advisor, Vidya Bhavan Society, Udaipur, Rajasthan.

Academic Support Group Members

Smt. Namrita Batra, Vidyabhavan Society Resource Centre, Udaipur, Rajasthan
Sri. Inder Mohan Singh, Vidyabhavan Society Resource Centre, Udaipur, Rajasthan
Sri. Yashwanth Kumar Dave, Vidyabhavan Society Resource Centre, Udaipur, Rajasthan
Smt. Padma Priya Sherali, Community Mathematics Centre, Rishi Vally School, Chittoor
Kumari. M. Archana, Dept. of Mathematics \& Statistics, University of Hyderabad
Sri. Sharan Gopal, Dept. of Mathematics \& Statistics, University of Hyderabad
Sri. P. Chiranjeevi, Dept. of Mathematics \& Statistics, University of Hyderabad
Sri.Abbaraju Kishore, Teacher, MPUPS, Chemallamudi, Guntur
Illustration \& Design Team
Sri. Prashanth Soni, Artist, Vidyabhavan Society Resource Centre, Udaipur, Rajasthan
Sri. Shakir Ahammed, Operator, Vidyabhavan Society Resource Centre, Udaipur, Rajasthan
Sri. R. Madhusudhana Rao, Computer Operator, SCERT, A.P., Hyderabad
COVER PAGE DESIGNING
Sri. K. Sudhakara Chary, HM, UPS Neelikurthy, Mdl.Maripeda, Dist. Warangal

Frind

 ثُك.
 ثزى.

هترجمهين

ايدِّيثرس (أردو)

كو آردٌّينيـيُرس (أردو)

چِّیْ ادُوبيزر

$$
\begin{aligned}
& \text { چچير چرسنز }
\end{aligned}
$$

FOREWORD

State Curriculum Frame Work (SCF-2011) recommends that childrens' life at schools must be linked to their life outside the school. The Right To Education Act (RTE-2009) perceives that every child who enters the school should acquire the necessary skills prescribed at each level upto the age of 14 years. Academic standards were developed in each subject area accordingly to maintain the quality in education. The syllabi and text books developed on the basis of National Curriculum Frame work 2005 and SCF-2011 signify an attempt to implement this basic idea.

Children after completion of Primary Education enter into the Upper Primary stage. This stage is a crucial link for the children to continue their secondary education. We recognise that, given space, time and freedom, children generate new knowledge by exploring the information passed on to them by the adults. Inculcating creativity and initiating enquiry is possible if we perceive and treat children as participants in learning and not as passive receivers. The children at this stage possess characteristics like curiosity, interest, questioning, reasoning, insisting proof, accepting the challenges etc., Therefore the need for conceptualizing mathematics teaching that allows children to explore concepts as well as develop their own ways of solving problems in a joyful way.

We have begun the process of developing a programme which helps children understand the abstract nature of mathematics while developing in them the ability to construct own concepts. The concepts from the major areas of Mathematics like Number System, Arithmetic, Algebra, Geometry, Mensuration and Statistics are provided at the upper primary stage. Teaching of the topics related to these areas will develop the skills prescribed in academic standards such as problem solving, logical thinking, expressing the facts in mathematical language, representing data in various forms, using mathematics in daily life situations.

The textbooks attempt to enhance this endeavor by giving higher priority and space to opportunities for contemplation and wondering, discussion in small groups and activities required for hands on experience in the form of 'Do This', 'Try This' and 'Projects'. Teachers support is needed in setting of the situations in the classroom. We also tried to include a variety of examples and opportunities for children to set problems. The book attempts to engage the mind of a child actively and provides opportunities to use concepts and develop their own structures rather than struggling with unnecessarily complicated terms and numbers. The chapters are arranged in such a way that they help the Teachers to evaluate every area of learning to comperehend the learning progress of children and in accordance with Continuous Comprehensive Evaluation (CCE).

The team associated in developing the textbooks consists of many teachers who are experienced and brought with them view points of the child and the school. We also had people who have done research in learning mathematics and those who have been writing textbooks for many years. The team tried to make an effort to remove fear of mathematics from the minds of children through their presentation of topics.

I wish to thank the national experts, university teachers, research scholars, NGOs, academicians, writers, graphic designers and printers who are instrumental to bring out this textbook in present form. I hope the teachers will make earnest effort to implement the syllabus in its true spirit and to achieve academic standards at the stage.

The process of developing materials is a continuous one and we hope to make this book better. As an organization committed to systematic reform and continuous improvement in quality of its products, SCERT, welcomes comments and suggestions which will enable us to undertake further revision and refinement.

B. Seshu kumari

Place: Hyderabad
Date: 28 January 2012

DIRECTOR
SCERT, Hyderabad

泣した

 كُّين

 ملاهيت يلنمارن 户

$$
\begin{aligned}
& \text { 28-01-2012 - تارتُ - } \\
& \text { مقام:- اليرآبا, }
\end{aligned}
$$

NATIONAL ANTHEM

Jana-gana-mana-adhinayaka, jaya he
Bharata-bhagya-vidhata.
Punjab-Sindh-Gujarat-Maratha
Dravida-Utkala-Banga
Vindhya-Himachala-Yamuna-Ganga
Uchchhala-jaladhi-taranga.
Tava shubha name jage,
Tava shubha asisa mage,
Gahe tava jaya gatha,
Jana-gana-mangala-dayaka jaya he
Bharata-bhagya-vidhata.
Jaya he! jaya he! jaya he!
Jaya jaya jaya, jaya he!!

PLEDGE

- Pydimarri Venkata Subba Rao

"India is my country. All Indians are my brothers and sisters.
I love my country, and I am proud of its rich and varied heritage. I shall always strive to be worthy of it.

I shall give my parents, teachers and all elders respect, and treat everyone with courtesy. I shall be kind to animals.

To my country and my people, I pledge my devotion. In their well-being and prosperity alone lies my happiness."

$$
\dot{\sim})^{\circ}
$$

- رابنزناتْ يكيور
?比

 El
 ب

$$
<\quad<\quad \text { بي }
$$

PREAMBLE

THE PEOPLE OF INDIA, having solemnly resolved to constitute India into a SOVEREIGN SOCIALIST SECULAR DEMOCRATIC REPUBLIC and to secure to all its citizens:

JUSTICE, social, economic and political;

LIBERTY of thought, expression, belief, faith and worship;
EQUALITY of status and of opportunity; and to promote among them all
FRATERNITY assuring the dignity of the individual and the unity and integrity of the Nation;

IN OUR CONSTITUENT ASSEMBLY this twenty-sixth day of November, 1949, do HEREBY ADOPT, ENACT AND GIVE TO OURSELVES THIS CONSTITUTION.

. Tr Th er

$$
\begin{aligned}
& \text { ? } \\
& \text { انصانٍ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مساوات } \\
& \text { اخوتِوزٌ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { إرا }
\end{aligned}
$$

Subs. by the constitution [Forty-second Amendment] Act, 1976, Sec.2, for "Sovereign Democratic Republic" (w.e.f. 3.1.1977)

Subs. by the constitution [Forty-second Amendment] Act, 1976, Sec.2, for "Unity of the Nation" (w.e.f. 3.1.1977)

MATHEMATICS

Class VII (Part-2)

Novermber

Page No.	Syllabus to be covered during	Contents	S. No.
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	November	Construction of Triangles	. 9
$\begin{aligned} & 22 \\ & 23 \end{aligned}$	November		. 10
$\begin{aligned} & 60 \\ & 61 \end{aligned}$	December ورّ	Powers and Exponents	. 11
$\begin{aligned} & 92 \\ & 93 \end{aligned}$	December ورّ	Quadrilaterals	. 12
$\begin{aligned} & 128 \\ & 129 \end{aligned}$	January	Area and Perimeter	. 13
$\begin{aligned} & 168 \\ & 169 \end{aligned}$	February	Understanding 3D and 2D Shapes	. 14
$\begin{aligned} & 192 \\ & 193 \end{aligned}$	February	Symmetry ت تهك	. 15

CONSTRUCTIONOFTRIANGLES

9

9.0 Introduction

You will learn how to construct triangles in this chapter. Atriangle can be drawn if you know the elements that are required for two triangles to be congurent. Thus, a triangle can be drawn in any of the situations given below i.e., if we know the-
(i) Three sides of the triangle.
(ii) Two sides and the angle included between them.
(iii) Two angles and the side included between them.
(iv) Hypotenuse and one adjacent side of a right-angled triangle.

A triangle can also be drawn if two of its sides and a non-included angle are given. So, we require three independent measurements to construct a triangle.

Let us learn to construct triangles in each of the above cases.

9.1 Construction of a triangle when measurements of the three sides are given.

In the construction of any geometrical figure, drawing a rough sketch first, helps in indentifying the sides. So we should first draw a rough sketch of the triangle we want to construct and label it with the given measurements.

Example 1: Construct a $\triangle P Q R$ with sides $P Q=4 \mathrm{~cm}, \mathrm{QR}=5 \mathrm{~cm}$ and $\mathrm{RP}=7 \mathrm{~cm}$.
STEP 1 : Draw a rough sketch of the triangle and label it with the given measurements.

STEP 2 : Draw a line segment $Q R$ of length 5 cm .

9
.
Construction of Triangles

 (i
وونلعاورانطكررمياذْ زاوي
روزاو ـياورانكاربميانن

 9.1

$$
\begin{aligned}
& \text { مرلـ2: }
\end{aligned}
$$

STEP 3: With centre Q, draw an arc of radius 4 cm .

STEP 4 : Since P is at a distance of 7 cm from R, draw another arc from R with radius 7 cm such that it intersects first arc. Mark the intersection point as P .

STEP 5: Join Q, P and P, R. The required $\triangle P Q R$ is constructed.

Try This

1. Construct a triangle with the same measurements given in above example, taking PQ as base. Are the triangles congurent?
2. Construct a $\Delta \mathrm{PET}, \mathrm{PE}=4.5 \mathrm{~cm}, \mathrm{ET}=5.4 \mathrm{~cm}$ and $\mathrm{TP}=6.5 \mathrm{~cm}$ in your notebook.

Now construct $\triangle \mathrm{ABC}, \mathrm{AB}=5.4 \mathrm{~cm}, \mathrm{BC}=4.5 \mathrm{~cm}$ and $\mathrm{CA}=6.5 \mathrm{~cm}$ on a piece of paper. Cut it out and place it on the figure you have constructed in your note book. Are the triangles congruent? Write your answer in your notebook using mathematical notation.

 كنقظ,

 شث

$$
\begin{aligned}
& \text { كا كشث } \\
& \text { 1- } 1 \\
& \text { - } 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { rورشث }
\end{aligned}
$$

Exercise - 1

1. Construct $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=5.5 \mathrm{~cm}, \mathrm{BC}=6.5 \mathrm{~cm}$ and $\mathrm{CA}=7.5 \mathrm{~cm}$.
2. Construct $\Delta \mathrm{NIB}$ in which $\mathrm{NI}=5.6 \mathrm{~cm}, \mathrm{IB}=6 \mathrm{~cm}$ and $\mathrm{BN}=6 \mathrm{~cm}$. What type of triangle is this?
3. Construct an equilateral $\triangle \mathrm{APE}$ with side 6.5 cm .
4. Construct a $\triangle \mathrm{XYZ}$ in which $\mathrm{XY}=6 \mathrm{~cm}, \mathrm{YZ}=8 \mathrm{~cm}$ and $\mathrm{ZX}=10 \mathrm{~cm}$. Using protractor find the angle at X . What type of triangle is this?
5. Construct $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and $\mathrm{CA}=3 \mathrm{~cm}$. Which type of triangle is this?
6. Construct $\triangle \mathrm{PEN}$ with $\mathrm{PE}=4 \mathrm{~cm}, \mathrm{EN}=5 \mathrm{~cm}$ and $\mathrm{NP}=3 \mathrm{~cm}$. If you draw circles instead of arcs how many points of intersection do you get? How many triangles with given measurements are possible? Is this true in case of every triangle?

Try This

Sushanth prepared a problem: Construct $\triangle X Y Z$ in which $X Y=2 \mathrm{~cm}, Y Z=8 \mathrm{~cm}$ and $X Z=4 \mathrm{~cm}$.

He also drew the rough sketch as shown in Figure 1.

Figure 1
Reading the problem, Srija told Sushanth that it would not be possible to draw a triangle with the given measurements.

However, Sushanth started to draw the diagram as shown in Figure 2.

Figure 2

Check whether Sushanth can draw the triangle. If not why? Discuss with your friends. What property of triangles supports Srija's idea?

(1)

- سوال رُّهكريوسف ليكّن لوز

(2)
 - مطا.تّ تش

$$
\begin{aligned}
& \text { 2 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4 } 4
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. }
\end{aligned}
$$

9.2 Construction of a triangle with two given sides and the included angle.

Example 2 : Construct $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$ and $\angle \mathrm{B}=50^{\circ}$.
STEP 1: Draw a rough sketch of a triangle and label it with the given measurements.

STEP 2: Draw a line segment $A B$ of length 4 cm .

STEP 3 : Draw a ray $\overrightarrow{\mathrm{BX}}$ making an angle 50° with AB .
(Use protractor from your geometry box to measure this angle.)

STEP 4: Draw an arc of radius 5 cm from B , such that it intersect: ray $\overrightarrow{\mathrm{BX}}$. Mark the intersection point as C .

STEP 5: Join C, A to get the required $\triangle \mathrm{ABC}$.

9.2

رطم3: أيكشقاع

Exercise - 2

1. Draw $\triangle \mathrm{CAR}$ in which $\mathrm{CA}=8 \mathrm{~cm}, \angle \mathrm{~A}=60^{\circ}$ and $\mathrm{AR}=8 \mathrm{~cm}$. Measure $\mathrm{CR}, \angle \mathrm{R}$ and $\angle \mathrm{C}$. What kind of triangle is this?
2. Construct $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\mathrm{BC}=6 \mathrm{~cm}$.
3. Construct $\triangle \mathrm{PQR}$ such that $\angle \mathrm{R}=100^{\circ}, \mathrm{QR}=\mathrm{RP}=5.4 \mathrm{~cm}$.
4. Construct $\triangle \mathrm{TEN}$ such that $\mathrm{TE}=3 \mathrm{~cm}, \angle \mathrm{E}=90^{\circ}$ and $\mathrm{NE}=4 \mathrm{~cm}$.

9.3 Construction of a triangle when two angles and the side between the angles is given

Example 3 : Construct $\triangle \mathrm{MAN}$ with $\mathrm{MA}=4 \mathrm{~cm}, \angle \mathrm{M}=45^{\circ}$ and $\angle \mathrm{A}=100^{\circ}$.

STEP 1: Draw rough sketch of a triangle and label it with the given measurements.

STEP 2: Draw line segment MA of length 4 cm .

STEP 3 : Using protractor draw a ray $\overrightarrow{\mathrm{MX}}$, making an angle 45° at M .

2- \#

1

$\mathrm{QR}=\mathrm{RP}=5.4 \mathrm{~cm} \angle \mathrm{R}=100^{\circ}$ 年々

9.3

مرلـ2:
$\mathrm{M} \longrightarrow 4 \mathrm{~cm}$.

مرلم3: ايكثعاع المع

STEP 4: Using protractor draw a ray $\overrightarrow{\mathrm{AY}}$, making an angle 100° at A .

Extend the ray $\overrightarrow{M X}$ if necessary to intersect ray $\overrightarrow{\mathrm{AY}}$.

STEP 5: Mark the intersecting point of the two rays as N. You have the required Δ MAN

Try This

Construct a triangle with angles 105° and 95° and a side of length of your choice. Could you construct the triangle? Discuss with your friends and justify.

Exercise - 3

1. Construct $\triangle \mathrm{NET}$ with measurement $\mathrm{NE}=6.4 \mathrm{~cm}, \angle \mathrm{~N}=50^{\circ}$ and $\angle \mathrm{E}=100^{\circ}$.
2. Construct $\triangle \mathrm{PQR}$ such that $\mathrm{QR}=6 \mathrm{~cm}, \angle \mathrm{Q}=\angle \mathrm{R}=60^{\circ}$. Measure the other two sides of the triangle and name the triangle.
3. Construct $\triangle \mathrm{RUN}$ in which $\mathrm{RN}=5 \mathrm{~cm}, \angle \mathrm{R}=\angle \mathrm{N}=45^{\circ}$. Measure the other angle and other sides. Name the triangle.

$\left.\int_{0}^{2}\right)^{2}$
105°

3．も

－

ث

9.4 Construction of right-angled triangle when the hypotenuse and a side are given.

Example 4 : Construct $\triangle \mathrm{ABC}$, right-angled at A , and $\mathrm{BC}=6 \mathrm{~cm} ; \mathrm{AB}=5 \mathrm{~cm}$.
STEP 1: Draw a rough sketch of right-angled triangle and label it with given information.
Note: side opposite to the right angle is called hypotenuse.

STEP 2 : Draw a line segment $A B$ of length 5 cm .

STEP 3 : Construct a ray $\overrightarrow{\mathrm{AX}}$ perpendicular to $\overline{\mathrm{AB}}$ at A .

STEP 4: Draw an arc from B with radius 6 cm intersecting $\overrightarrow{\mathrm{AX}}$. Mark the intersection point as ' C '.

STEP 5: Join B, C to get the required $\Delta \mathrm{ABC}$.

Exercise - 4

1. Construct a right-angled $\triangle \mathrm{ABC}$ such that $\angle \mathrm{B}=90^{\circ}, \mathrm{AB}=8 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$.
2. Construct a $\triangle P Q R$, right-angled at R, hypotenuse is 5 cm and one of its adjacent sides is 4 cm .
3. Construct an isosceles right-angled $\triangle \mathrm{XYZ}$ in which $\angle \mathrm{Y}=90^{\circ}$ and the two sides are 5 cm each.

9.5 Construction of triangle when two sides and the non-included angle are given

Example 5 : Construct $\triangle \mathrm{ABC}$ such that $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}, \angle \mathrm{~B}=40^{\circ}$.

STEP 1: Draw rough sketch of $\triangle \mathrm{ABC}$ and label it with the given measurements.

STEP 2: Draw a line segment $A B$ of length 5 cm .

4- シ

1. 2

9.5

STEP 4: With A as centre and radius 4 cm , draw an arc to cut ray $\overrightarrow{B X}$.

STEP 5: Mark the intersecting point as C and join C, A to get the required $\triangle \mathrm{ABC}$.

Can you cut the ray $\overrightarrow{\mathrm{BX}}$ at any other point? You will see that as $\angle \mathrm{B}$ is acute, the arc from A of radius 4 cm cuts the ray $\overrightarrow{\mathrm{BX}}$ twice.

If we join C and A , we get one triangle and if we join C^{1} and A , then we get other triangle. So we may have two triangles as given below:

A

كيا قنثعاع
تو

زن

Try This

Construct a triangle with two sides of length of your choice and the non-included angle as an obtuse angle. Can you draw two triangles in this solution?

Exercise - 5

1. Construct $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=4.5 \mathrm{~cm}, \mathrm{AC}=4.5 \mathrm{~cm}$ and $\angle \mathrm{B}=50^{\circ}$. Check whether you get two triangles.
2. Construct $\triangle \mathrm{XYZ}$ such that $\mathrm{XY}=4.5 \mathrm{~cm}, \mathrm{XZ}=3.5 \mathrm{~cm}$ and $\angle \mathrm{Y}=70^{\circ}$. Check whether you get two triangles.
3. Construct \triangle ANR with the sides AN and AR of lengths 5 cm and 6 cm respectively and $\angle \mathrm{N}$ is 100°. Check whether you get two triangles.
4. Construct $\triangle \mathrm{PQR}$ in which $\mathrm{QR}=5.5 \mathrm{~cm}, \mathrm{QP}=5.5 \mathrm{~cm}$ and $\angle \mathrm{Q}=60^{\circ}$. Measure RP . What kind oftriangle is this?
5. Construct the triangles with the measurement given in the following table.

Triangle	Measurements
$\Delta \mathrm{ABC}$	$\mathrm{BC}=6.5 \mathrm{~cm}, \mathrm{CA}=6.3 \mathrm{~cm}, \mathrm{AB}=4.8 \mathrm{~cm}$.
$\Delta \mathrm{PQR}$	$\mathrm{PQ}=8 \mathrm{~cm}, \mathrm{QR}=7.5 \mathrm{~cm}, \angle \mathrm{PQR}=85^{\circ}$
$\Delta \mathrm{XYZ}$	$\mathrm{XY}=6.2 \mathrm{~cm}, \angle \mathrm{Y}=130^{\circ}, \angle \mathrm{Z}=70^{\circ}$
$\Delta \mathrm{ABC}$	$\mathrm{AB}=4.8 \mathrm{~cm}, \mathrm{AC}=4.8 \mathrm{~cm}, \angle \mathrm{~B}=35^{\circ}$
$\Delta \mathrm{MNP}$	$\angle \mathrm{N}=90^{\circ}, \mathrm{MP}=11.4 \mathrm{~cm} ., \mathrm{MN}=7.3 \mathrm{~cm}$.
$\Delta \mathrm{RKS}$	$\mathrm{RK}=\mathrm{KS}=\mathrm{SR}=6.6 \mathrm{~cm}$.
$\Delta \mathrm{PTR}$	$\angle \mathrm{P}=65^{\circ}, \mathrm{PT}=\mathrm{PR}=5.7 \mathrm{~cm}$.

Looking Back

To construct a triangle, three independent measurements are required.

A triangle can be constructed when.
(i) The three sides of the triangle are given.
(ii) Two sides and the angle included between them is given.

(iii) Two angles and their included side is given.
(iv) The hypotenuse and one adjacent side of a right angle triangle are given.
(v) Two sides and the not included angle are given. كيآتِان بياًث

5 -
. 1

2 2 - كَ
. 3

4 4 كـي

ت侕	莈
$\mathrm{AB}=4.8 \mathrm{f}^{\sim} \mathrm{CA}=6.3$ م $\quad \mathrm{BC}=6.5$ م	ABC
$\angle P Q R=85^{\circ} \mathrm{F} \mathrm{QR}=7.5 \sim \mathrm{PQ}=8 \mathrm{f}$	PQR
$\angle Z=70^{\circ} \quad \angle Y=130^{\circ} \quad \mathrm{XY}=6.2 \mathrm{~F}^{\circ}$	XYZ
$\angle B=35^{\circ} \quad \mathrm{AC}=4.8{ }^{\circ} \mathrm{fr} \mathrm{AB}=4.8{ }^{\circ}$	ABC
$\mathrm{MN}=7.3 \mathrm{~cm} \quad \mathrm{MP}=11.4 \mathrm{~cm} \quad \mathrm{~N}=90^{\circ}$	MNP
$\mathrm{RK}=\mathrm{KS}=\mathrm{SR}=6.6 \mathrm{~cm}$	RKS
$\mathrm{PT}=\mathrm{PR}=5.7 \mathrm{~cm} \quad \angle P=65^{\circ}$	PTR

-

- (i

, (iii
(iv
(v

ALGEBRAIC EXPRESSIONS

10.0 Introduction

In class VI you had already learnt that variables can take on different values and the value of constants is fixed. You had also learnt how to represent variables and constants using letters like x, y, z, a, b , p, metc. You also came across simple algebraic expressions like $2 x-3$ and so on. You had also seen how these expressions are usefull in formulating and solving problems.

In this chapter, you will learn more about algebraic expressions and their addition and subtraction. However, before doing this we will get acquainted to words like 'terms', 'like terms','unlike terms' and 'coefficients'.

Let us first review what you had learnt in class VI, Algebra.

Exercise - 1

1. Find the rule which gives the number of matchsticks required to make the following patterns-
(i) $\mathrm{HHHH} . .$.
(ii) VVVV........
2. Given below is a pattern made from coloured tiles and white tiles.

Figure 1

Figure 2

Figure 3
(i) Draw the next two figures in the pattern above.
(ii) Fill the table given below and express the pattern in the form of an algebraic expression.

Figure Number	1	2	3	4	5
Number of coloured tiles	4				

Hivesin
 ALGEBRAIC EXPRESSIONS

10.0- "بَيs
\#\#

 -

 En

1. \#

-1
VVVV...... (ii) HHHH....
(i) -

(2 $\int^{\sqrt{3}}$)
(3 $5^{5 *}$)

(iii) Fill the table given below and express the pattern in the form of an algebraic expression.

Figure Number	1	2	3	4	5
Number of total tiles	5				

3. Write the following statements using variables, constants and arithmetic operations.
(i) 6 more than p
(ii) ' x ' is reduced by 4
(iii) 8 subtracted from y
(iv) q multiplied by ${ }^{-}-5$ '
(v) y divided by 4
(vi) One-fourth of the product of ' p ' and ' q '
(vii) 5 added to the three times of 'z'
(viii) x multiplied by 5 and added to ' 10 '
(ix) 5 subtracted from two times of 'y'
(x) y multiplied by 10 and added to 13
4. Write the following expressions in statements.
(i) $x+3$
(ii) $\mathrm{y}-7$
(iii) $10 l$
(iv) $\frac{x}{5}$
(v) $3 m+11$
(vi) $2 y-5$
5. Some situations are given below. State the number in situations is a variable or constant?

Example : Our age - its value keeps on changing so it is an example of a variable quantity.
(i) The number of days in the month of January
(ii) The temperature of a day
(iii) Length of your classroom
(iv) Height ofthe growing plant

-					
تقرار	1	2	3	4	5
	5				

- 3- 3-
-o夕6ㅜㄴ .i
-

 - (ورq~
 كو ك x.viii צу .ix ك ك 10 y .x 4-
(i) $x+3$
(ii) $y-7$
(iii) $10 l$
(iv) $\frac{x}{5}$
(v) $3 m+11$
(vi) $2 \mathrm{y}-5$

5- 5-

 -ii

10.1 Algebraic Term and Numeric term

Consider the expression $2 x+9$.
Here ' x ' is multiplied by 2 and then 9 is added to it. Both ' $2 x$ ' and ' 9 ' are terms in the expression $\mathbf{2 x + 9}$. Moreover $2 x$ is called algebraic term and 9 is called numeric term.

Consider another expression $3 x^{2}-11 y$.
$3 x^{2}$ is formed by multiplying $3, x$ and x. 11y is the product of 11 and y. 11 y is then subtracted from $3 x^{2}$ to get the expression $3 x^{2}-11 y$. In the expression $\mathbf{3} \boldsymbol{x}^{2}-\mathbf{1 1} \mathbf{y}, \mathbf{3} \boldsymbol{x}^{2}$ is one term and 11 y is the other term.

When we multiply \boldsymbol{x} with \boldsymbol{x} we can write this as x^{2}. This is similar to writing 4 multiplied by 4 as 4^{2}. Similarly when we multiply \boldsymbol{x} three times i.e., $\boldsymbol{x} \times \boldsymbol{x} \times \boldsymbol{x}$ we can write this as x^{3}. This is similar to writing $6 \times 6 \times 6$ as 6^{3}.

Do This

In the expressions given below identify and write all the terms.
(i) $5 x^{2}+3 y+7$
(ii) $5 x^{2} y+3$
(iii) $3 x^{2} y$
(iv) $5 \mathrm{x}-7$
(v) $5 x+8-2(-y)$
(vi) $7 x^{2}-2 x$

10.1.1 Like and unlike terms

Let us observe the following examples.
(i) $5 x$ and $8 x$
(ii) $7 a^{2}$ and $14 a^{2}$
(iii) $3 x y$ and $4 x y$
(iv) $3 x y^{2}$ and $4 x^{2} y$

In the first example, both terms contain the same variable i.e. x and the exponent of the variable is also the same i.e. 1

In the second example, both terms contain the same variable i.e. a and the exponent of the variable is also the same i.e. 2

In the third example, both terms contain the same variables i.e. x and y and the exponent of variable x is 1 and the exponent of variable y is 1 .

In the fourth example, both terms contain the same variables x and y. However, their exponents are not the same. In the first term, the exponent of x is 1 and in the second it is 2 . Similarly, in the first term the exponent of y is 2 and in the second term it is 1 .

The first three pairs of terms are examples of 'like terms' while the fourth is a pair of 'unlike terms'.

Like terms are terms which contain the same variables with the same exponents.

10.1:ـ الجبرى ركن-اورعدركركن

x, x, 3

(i) $5 x^{2}+3 y+7$
(ii) $5 x^{2} y+3$
(iii) $3 x^{2} y$
(iv) $5 x-7$
(v) $5 x+8-2(-y)$
(vi) $7 x^{2}-2 x$

(i) $8 x$ و $5 x$
(ii) $7 a^{2}$, $14 a^{2}$
(iii) $3 x y$ و $4 x y$
(iv) $3 x y^{2}$ اور $4 x^{2} y$

وورك

وتح2 2

Do This

1. Group the like terms together.
$12 x, 12,25 x,-25,25 y, 1, x, 12 y, y, 25 x y, 5 x^{2} y, 7 x y^{2}, 2 x y, 3 x y^{2}, 4 x^{2} y$
2. State true or false and give reasons for your answer.

(i) $7 x^{2}$ and $2 x$ are unlike terms
(ii) pq^{2} and $-4 \mathrm{pq}^{2}$ are like terms
(iii) $x y,-12 x^{2} y$ and $5 x y^{2}$ are like terms

10.2 Coefficient

In 9 xy ; \quad ' 9 ' is the coefficient of ' $x y$ ' as $\quad 9(x y)=9 x y$
' x ' is the coefficient of ' $9 y$ ' as $\quad x(9 y)=9 x y$
' y ' is the coefficient of ' $9 x$ ' as $y(9 x)=9 x y$
' $9 x$ ' is the coefficient of ' y ' as $9 x(y)=9 x y$
$9 y$ is the coefficient of ' x ' as $9 y(x)=9 x y$
$x y$ is the coefficient of ' 9 ' as $\quad x y(9)=9 x y$
Since 9 has a numerical value it is called a numerical coefficient. x, y and $x y$ are literal coefficients because they are variables.

Similarly in '-5x', ' -5 ' is the numerical coefficient and ' x ' is the literal coefficient.

Try This

(i) What is the numerical coefficient of ' x '?
(ii) What is the numerical coefficient of ' $-y$ '?
(iii) What is the literal coefficient of ' $-3 z$ '?
(iv) Is a numerical coefficient a constant?
(v) Is a literal coefficient always a variable?

10.3 Expressions

An expression is a single term or a combination of terms connected by the symbols ' + , (plus) or ' - ' (minus).
For example : $6 x+3 y, 3 x^{2}+2 x+y, 10 y^{3}+7 y+3,9 a+5,5 a+7 b, 9 x y, 5+7-2 x, 9+3-2$
Note: multiplication' \times ' and division ' \div ' do not separate terms. For example $2 x \times 3 y$ and $\frac{2 x}{3 y}$ are single terms.

$$
\begin{aligned}
& 12 \mathrm{x}, 12,25 \mathrm{x},-25,25 \mathrm{y}, 1, \mathrm{x}, 12 \mathrm{y}, \mathrm{y}, 25 \mathrm{xy}, 5 \mathrm{x}^{2} y, 7 x y^{2}, 2 x y, 3 x y^{2}, 4 x^{2} y
\end{aligned}
$$

$$
\begin{aligned}
& \text { - اور } p q^{2} \quad \text {-ii } \\
& \text { (ور } 5 x y^{2}-12 x^{6} \times x y \quad \text {-iii }
\end{aligned}
$$

$$
\begin{aligned}
& 6 x+3 y, 3 x^{2}+2 x+y, 10 y^{3}+7 y+3,9 a+5,5 a+7 b \quad \text {, } \\
& 9 x y, 5+7-2 x, 9+3-2
\end{aligned}
$$

Do This

1. How many terms are there in each of the following expressions?
(i) $x+y$
(ii) $11 x-3 y-5$
(iii) $6 x^{2}+5 x-4$
(iv) $x^{2} z+3$
(v) $5 x^{2} y$
(vi) $x+3+y$
(vii) $x-\frac{11}{3}$
(viii) $\frac{3 x}{7 y}$
(ix) $2 \mathrm{z}-\mathrm{y}$
(x) $3 x+5$

10.3.1 Numerical expressions and algebraic expressions

Consider the following examples.
(i) $1+2-9$
(ii) -3-5
(iii) $x-\frac{11}{3}$
(iv) $4 y$
(v) $9+(6-5)$
(vi) $3 x+5$
(vii) $\quad(17-5)+4$
(viii) $2 x-y$

Do you find any algebraic terms in the examples (i), (ii), (v) and (vii)?
If every term of an expression is a constant term, then the expression is called numerical expression. If an expression has at least one algebraic term, then the expression is called an algebraic expression.

Which are the algebraic expressions in the above examples?

Aryabhata (India)

475-550 AD
He wrote an astronomical treatise, Aryabhatiyam (499AD). He was the first Indian mathematician who used algebraic expressions. India's first satellite was named Aryabhata.
1.

$$
\begin{array}{r}
6 x^{2}+5 x-4 \\
x+3+y \tag{vii}\\
3 x+5 \quad \text { (x) } \quad 2 \mathrm{z}-\mathrm{y}
\end{array}
$$

(iii) $11 x-3 y-5$
(ii)
$x+y$
(i)
(v)
$x^{2} z+3$
(iv)
(viii)
$x-\frac{11}{3}$

Numerical expressions and algebraic expressions 10.3.1

$4 y \quad$ (iv) $\quad x-\frac{11}{3}$
(iii) $-3-5$
(ii) $1+2-9$
(i)
$2 x-y \quad($ viii $) \quad(17-5)+4$
(vii)
$3 x+5$
(vi) $9+(6-5)$
(v)

10.3.2 Types of algebraic expressions

Algebraic expressions are named according to the number of terms present in them.

Number of terms	Name ofthe Expression	Examples
One term	Monomial	(a) x (b) $7 x y z$ (c) $3 x^{2} y \quad$ (d) $q z^{2}$
Two unlike terms	Binomial	(a) $a+4 x$ (b) $x^{2}+2 y$ (c) $3 x^{2}-y^{2}$
Three unlike terms	Trinomial	(a) $a x^{2}+4 x+2$ (b) $7 x^{2}+9 y^{2}+10 z^{3}$
More than one	Multinomial	(a) $4 x^{2}+2 x y+c x+d$
unlike terms		(b) $9 p^{2}-11 q+19 r+t$

Note: Binomial, trinomials are also multinomial algebraic expressions.

Do This

1. Give two examples for each type of algebraic expression.
2. Identify the expressions given below as monomial, binomial, trinomial and multinomial.
(i) $5 x^{2}+y+6$
(ii) $3 x y$
(iii) $5 x^{2} y+6 x$
(iv) $a+4 x-x y+x y z$

10.4 Degree of algebraic expressions

Before discussing the degree of algebraic expressions let us understand what we mean by the degree of a monomial.

10.4.1 Degree of a monomial

Consider the term $9 x^{2} y^{2}$

1. What is the exponent of ' x ' in the above term?
2. What is the exponent of 'y' in the above term?
3. What is the sum of these two exponents?

The sum of all exponents of the variables present in a monomial is called the degree of the term or degree of the monomial.

اركانكّترار	عبارت6ام	ل*
ابيكرك	اكيكن	(a) $x \quad(b) 7 x y^{2}$ (c) $3 x^{2} y \quad$ (d) $q z^{2}$
, ونيّ**)	,وركن,	(a) $a+4 x$ (b) $x^{2}+2 y$ (c) $3 x^{2}-y^{2}$
	"تّنركنيإمركن	$\begin{aligned} & \text { (a) } a x^{2}+4 x+2 \\ & \text { (b) } 7 x^{2}-9 y^{2}+10 z^{2} \end{aligned}$
	كثّركن	(a) $4 x^{2}+2 x y+c x+d$ (b) $9 p^{2}-11 q+19 r+l$

$$
\begin{array}{rrr}
3 x y & \text { (ii) } & 5 x^{2}+y+6 \\
\mathrm{a}+4 x-x y+x y z & \text { (iv) } & 5 x^{2} y+6 x
\end{array}
$$

Degree of Monomial 10.4.1 ايكركنعبارتكاورج

$$
\begin{aligned}
& \text { - } 9 x^{2} y^{2}
\end{aligned}
$$

Observe the following table.

S. No.	Monomial	Exponents			Degree ofthe monomial
		x	y	z	
1	x	1	-	-	1
2	$7 x^{2}$	2	-	-	2
3	$-3 x y z$	1	1	1	$1+1+1=3$
4	$8 y^{2} z^{2}$	-	2	2	$2+2=4$

10.4.2 Degree of constant terms

Let us discuss the degree of the constant term 5 .

Since $x^{0}=1$, we can write 5 as $5 x^{0}$ as the exponent of the variable is ' 0 '.

Degree of constant term is zero.

10.4.3 Degree of algebraic expressions

Observe the following table.

S. No.	Algebraic Expression	Degree of each term				Highest Degree
		First term	Second term	Third term	Fourth term	
1.		3	-	-	-	3
2	$3 y-x^{2} y^{2}$	1	4	-	-	4
3	$4 x^{2}+3 x y z+\mathrm{y}$	2	3	1	-	3
4	$p q-6 p^{2} q^{2}-p^{2} q+9$	2	4	3	0	4

In the second example the highest degree of one of the terms is 4 . Therefore, the degree of the expression is 4 . Similarly, the degree of the third expression is 3 and the degree of the fourth expression is 4 .

The highest of the degrees of all the terms of an expression is called the degree of the expression.
; يل عج

****	ابكركن	\%			اكيكركّفق
		x	y	z	
1	x	1			1
2	$7 x^{2}$	2			2
3	-3xyz	1	1	1	$1+1+1=3$
4	$8 y^{2} z^{2}$		2	2	$2+2=4$

10.4.2

تونْه

10.4.3

Exercise 2

1. Identify and write the like terms in each of the following groups.
(i) $a^{2}, b^{2},-2 a^{2}, c^{2}, 4 a$
(ii) $3 a, 4 x y,-y z, 2 z y$
(iii) $-2 x y^{2}, x^{2} y, 5 y^{2} x, x^{2} z$
(iv) $7 p, 8 p q,-5 p q,-2 p, 3 p$
2. State whether the following are numerical expressions or algebraic expressions.
(i) $x+1$
(ii) $3 m^{2}$
(iii) $-30+16$
(iv) $4 p^{2}-5 q^{2}$
(v) 96
(vi) $x^{2}-5 y z$
(vii) $215 x^{2} y z$
(viii) $95 \div 5 \times 2$
(ix) $2+m+n$
(x) $310+15+62$
(xi) $11 a^{2}+6 b^{2}-5$
3. Identify monomial or binomial or trinomial from the following multinomials and write them.
(i) y^{2}
(ii) $4 y-7 z$
(iii) $1+x+x^{2}$
(iv) $7 m n$
(v) $a^{2}+b^{2}$
(vi) 100 xyz
(vii) $a x+9$
(viii) $p^{2}-3 p q+r$
(ix) $3 y^{2}-x^{2} y^{2}+4 x$
(x) $7 x^{2}-2 x y+9 y^{2}-11$
4. What is the degree of each of the monomials.
(i) $7 y$
(ii) $-x y^{2}$
(iii) $x y^{2} z^{2}$
(iv) $-11 y^{2} z^{2}$
(v) $3 m n$
(vi) $-5 p q^{2}$
5. Find the degree of each algebraic expression.
(i) $3 x-15$
(ii) $x y+y z$
(iii) $2 y^{2} z+9 y z-7 z-11 x^{2} y^{2}$
(iv) $2 y^{2} z+10 y z$
(v) $p q+p^{2} q-p^{2} q^{2}$
(vi) $a x^{2}+b x+c$
6. Write any two Algebraic expressions with the same degree.

10.5 Addition and subtraction of like terms

Observe the following problems.

1. Number of pencils with Vinay is equal to 4 times the pencils with Siddu. What is the total number of pencils both have together?
2. Tony and Basha went to a store. Tony bought 7 books and Basha bought 2 books. All the books are of same cost. How much money did Tony spend more than Basha?

2- ت

1- 1-..
(i) $\mathrm{a}^{2}, \mathrm{~b}^{2},-2 \mathrm{a}^{2}, \mathrm{c}^{2}, 4 \mathrm{a}$
(ii) $3 \mathrm{a}, 4 x y,-y z, 2 z y$
(iii) $-2 x^{2} y, x^{2} y, 5 y^{2} x, x^{2} z$
(iv) $7 \mathrm{p}, 8 \mathrm{pq},-5 \mathrm{pq},-2 \mathrm{p}, 3 \mathrm{p}$

(i) $x+1$
(ii) $3 \mathrm{~m}^{2}$
(iii) $-30+16$
(iv) $4 p^{2}-5 q^{2}$
(v) 96
(vi) $x^{2}-5 y z$
(vii) $215 x^{2} y z$
(viii) $95 \div 5 \times 2$ (ix) $2+\mathrm{m}+\mathrm{n}$
(x) $310+15+62$
(xi) $11 a^{2}+6 b^{2}-5$

(i) y^{2}
(ii) $4 y-7 z$
(iii) $1+x+x^{2}$
(iv) 7 mm
(v) $a^{2}+b^{2}$
(vi) 100 xyz
(vii) $a x+9$
(viii) $p^{2}-3 p q+r$
(ix) $3 y^{2}-x^{2} y^{2}+4 x$
(x) $7 x^{2}-2 x y+9 y^{2}-11$

(i) 7 y
(ii) $-x y^{2}$
(ii) $x y^{2} z^{2}$
(iv) $-11 y^{2} z^{2}$
(v) 3 mn (vi) $-5 p q^{2}$

(i) $3 x-15$
(ii) $x y+y z$
(iii) $2 y^{2} z+9 y z-7 z-11 x^{2} y^{2}$
(vi) $2 y^{2} z+10 y z$
(v) $p q+p^{2} q-p^{2} q^{2}$
(vi) $a x^{2}+b x+c$

10.5

; لـ

إِّ

To find answers to such questions we have to know how to add and subtract like terms. Let us learn how to solve the following.

1. Number of pencils with Siddhu is not given in the problem, we shall take the number as ' x '. Vinay has 4 times of Siddu i.e., $4 \times x=4 x$
To find the total number of pencils, we have to add x and $4 x$
Therefore, the total number of pencils $=x+4 x$

$$
\begin{aligned}
& =(1+4) x \\
& =5 x \quad \text { (distributive law) }
\end{aligned}
$$

2. Since the cost of each book is not given, we shall take it as ' y '.

Therefore, Tony spends $7 \times y=₹ 7 y$
Basha spends $2 \times y=₹ 2 y$
Therefore, the amount spent by Tony more than Basha $\quad=7 y-2 y$

$$
=(7-2) y
$$

=₹ $5 y$ (distributive law)
Thus, we can conclude that.
The sum of two or more like terms is a like term with a numerical coefficient equal to the sum of the numerical coefficients of all the like terms in addition.

The difference between two like terms is a like term with a numerical coefficient equal to the difference between the numerical coefficients of the two like terms.

Do This

1. Find the sum of the like terms.
(i) $5 x, 7 x$
(ii) $7 x^{2} y,-6 x^{2} y$
(iii) $2 m, 11 m$
(iv) $18 a b, 5 a b, 12 a b$
(v) $3 x^{2},-7 x^{2}, 8 x^{2}$
(vi) $4 m^{2}, 3 m^{2},-6 m^{2}, m^{2}$
(vii) $18 p q,-15 p q, 3 p q$
2. Subtract the first term from the second term.
(i) $2 x y, 7 x y$
(ii) $5 a^{2}, 10 a^{2}$
(iii) $12 y, 3 y$
(iv) $6 x^{2} y, 4 x^{2} y$
(v) $6 x y,-12 x y$
10.5.1 Addition and subtraction of unlike terms
$3 x$ and $4 y$ are unlike terms. Their sum can be wirtten as $3 x+4 y$.
However, ' x ' and ' y ' are different variables so we can not apply distributive law and thus cannot add them.

 $4 \mathrm{xx}=4 x$ x
 $x+4 x$
$=(1+4) x$

$$
=(1+4) x
$$

5x=تقتمناميت)
2xy=2y

$$
7 y-2 y=\text { طابركبثارت تسزيا, }
$$

$$
=(7-2) y
$$

: * *
(i) $5 x, 7 x$
(ii) $7 x^{2} y,-6 x^{2} y$ (iii) $2 \mathrm{~m}, 11 \mathrm{~m}$
(iv) $18 \mathrm{ab}, 5 \mathrm{ab}, 12 \mathrm{ab}$
(v) $3 x^{2},-7 x^{2}, 8 x^{2}$ (vi) $4 m^{2}, 3 m^{2},-6 m^{2}, m^{2}$
(vii) $18 \mathrm{pq},-15 \mathrm{pq}, 3 \mathrm{pq}$
-

(iii) $12 y, 3 y$

- $3 x$

10.6 Simplification of an algebraic expression

Consider the expression $9 x^{2}-4 x y+5 y^{2}+2 x y-y^{2}-3 x^{2}+6 x y$
We can see that there are some like terms in the expression. These are $9 x^{2},-3 x^{2} ; 5 y^{2}$, $-y^{2} ;-4 x y, 2 x y$ and $6 x y$. On adding the like terms we get an algebraic expression in its simplified form. Let us see how the expression given above is simplified.

S.No.	Steps	Process
1.	Write down the expression	$9 x^{2}-4 x y+5 y^{2}+2 x y-y^{2}-3 x^{2}+6 x y$
2.	Group the like terms together	$\left(9 x^{2}-3 x^{2}\right)+(2 x y-4 x y+6 x y)+\left(5 y^{2}-y^{2}\right)$
3.	Addding the like terms	$(9-3) x^{2}+(2-4+6) x y+(5-1) y^{2}=6 x^{2}+4 x y+4 y^{2}$

Note : If no two terms of an expression are alike then it is said to be in the simplified form.

Let us study another example: $5 x^{2} y+2 x^{2} y+4+5 x y^{2}-4 x^{2} y-x y^{2}-9$
Step 1: $5 x^{2} y+2 x^{2} y+4+5 x y^{2}-4 x^{2} y-x y^{2}-9$
Step 2: $\left(5 x^{2} y+2 x^{2} y-4 x^{2} y\right)+\left(5 x y^{2}-x y^{2}\right)+(4-9)$ (bringing the like terms together)
Step 3: $3 x^{2} y+4 x y^{2}-5$

Do This

1. Simplify the following.
(i) $3 m+12 m-5 m$
(ii) $25 y z-8 y z-6 y z$
(iii) $10 m^{2}-9 m+7 m-3 m^{2}-5 m-8$
(iv) $9 x^{2}-6+4 x+11-6 x^{2}-2 x+3 x^{2}-2$
(v) $3 a^{2}-4 a^{2} b+7 a^{2}-b^{2}-a b$
(vi) $5 x^{2}+10+6 x+4+5 x+3 x^{2}+8$

10.7 Standard form of an expression

Consider the expression $3 x+5 x^{2}-9$. The degrees of first, second and third terms are 1,2 , and 0 respectively. Thus, the degrees of terms are not in the descending order.
By re-arranging the terms in such a way that their degrees are in descending order; we get the expression $5 x^{2}+3 x-9$. Now the expression is said to be in standard form.

Let us consider $3 c+6 a-2 b$. Degrees of all the terms in the expression are same. Thus the expression is said to be already in standard form. If we write it in alphabetical order as $6 a-2 b+3 c$ it looks more beautiful.

10.6

$$
\text { ب!ارت } 9 x^{2}-4 x y+5 y^{2}+2 x y-y^{2}-3 x^{2}-6 x y \text { رِيمی- }
$$

$5 x^{2} y+2 x^{2} y+4+5 x y^{2}-4 x^{2} y-x y^{2}-9$
$5 x^{2} y+2 x^{2} y+4+5 x y^{2}-4 x^{2} y-x y^{2}-9-1$ قر

قرم3: $3 x^{2} y+4 x y^{2}-5$

- 1- ;
(i) $3 m+12 m-5 m$
(ii) $25 y z-8 y z-6 y z$
(iii) $10 m^{2}-9 m+7 m-3 m^{2}-5 m-8$
(iv) $9 x^{2}-6+4 x+11-6 x^{2}-2 x+3 x^{2}-2$
(v) $3 a^{2}-4 a^{2} b+7 a^{2}-b^{2}-a b$
(vi) $5 x^{2}+10+6 x+4+5 x+3 x^{2}+8$
10.7
(3x+5x²-9
 (5x²+3x-9 اب $3 \mathrm{C}+6 \mathrm{a}-2 \mathrm{~b}$ ك

In an expression, if the terms are arranged in such a way that the degrees of the terms are in descending order then the expression is said to be in standard form.
Examples of expressions in standard form
(i) $7 x^{2}+2 x+11$
(ii) $5 y^{2}-6 y-9$

Do This

1. Write the following expressions in standard form.
(i) $3 x+18+4 x^{2}$
(ii) $8-3 x^{2}+4 x$
(iii) $-2 m+6-3 m^{2}$
(iv) $y^{3}+1+y+3 y^{2}$
2. Identify the expressions that are in standard form?
(i) $9 x^{2}+6 x+8$
(ii) $9 x^{2}+15+7 x$
(iii) $9 x^{2}+7$
(iv) $9 x^{3}+15 x+3$
(v) $15 x^{2}+x^{3}+3 x$
(vi) $x^{2} y+x y+3$
(vii) $x^{3}+x^{2} y^{2}+6 x y$
3. Write 5 different expressions in standard form.

10.8 Finding the value of an expression

Example 1: Find the value of $3 x^{2}$ if $x=-1$
Solution : Step 1: $3 x^{2}$ (write the expression)
Step 2: 3(-1) ${ }^{2}$ (substitute the value of variable)
Step 3: 3(1)=3

Example 2: Find the value of $x^{2}-y+2$ if $x=0$ and $y=-1$
Solution: Step 1: $x^{2}-y+2$ (write the expression)
Step 2: $0^{2}-(-1)+2$ (substitute the value of variable)
Step 3: $1+2=3$
Example 3: Area of a triangle is given by $A=\frac{1}{2} b h$. If $b=12 \mathrm{~cm}$ and $h=7 \mathrm{~cm}$ find the area of the triangle.

Solution: \quad Step 1: $\quad A=\frac{1}{2} b h$
Step 2: $\quad A=\frac{1}{2} \times 12 \times 7$
Step 3: $A=42$ sq. cm.

1-1
(i) $3 x+18+4 x^{2}$
(ii) $8-3 x^{2}+4 x$
(iii) $-2 m+6-3 m^{2}$
(i) $9 x^{2}+6 x+8$
(ii) $9 x^{2}+15+7 x$
(iii) $9 x^{2}+7$
(iv) $9 x^{3}+15 x+3$
(v) $15 x^{2}+x^{3}+3 x$
(vi) $\mathrm{x}^{2} \mathrm{y}+x \mathrm{y}+3$
(vii) $x^{3}+x^{2} y^{2}+6 x y$
-3 - 5
10.8

届
ق 3 x²

قرم:iii
كم
$x^{2}-y+2($ (عبارتكوكمْ)
: قرم i: ص

$A=\frac{1}{2} b h$
قوم
$A=\frac{1}{2} \times 12 \times 7$
(ii)

42 42 بلعّم
قرم (iii)

Try This

1. Find the value of the expression ' $-9 x^{\prime}$ if $x=-3$.
2. Write an expression whose value is equal to -9 , when $x=-3$.

Exercise - 3

1. Find the length of the line segment PR in the following figure in terms of a 'a'.

2. (i) Find the perimeter of the following triangle.

(ii) Find the perimeter of the following rectangle.

3. Subtract the second term from first term.
(i) $8 x, 5 x$
(ii) $5 p, 11 p$
(iii) $13 m^{2}, 2 m^{2}$
4. . Find the values of following monomials, if $x=1$.
(i) $-x$
(ii) $4 x$
(iii) $-2 x^{2}$
5. Simplify and find the value of $4 x+x-2 x^{2}+x-1$, when $x=-1$.
6. Write the expression $5 x^{2}-4-3 x^{2}+6 x+8+5 x-13$ in its simplified form. Find its value when $x=-2$.
7. If $x=1$ and $y=2$, find the values of the following expressions.
(i) $4 x-3 y+5$
(ii) $x^{2}+y^{2}$
(iii) $x y+3 y-9$
8. Area of a rectangle is given by $\mathrm{A}=l \times b$. If $l=9 \mathrm{~cm}, b=6 \mathrm{~cm}$, find its area?
9. Simple interest is given by $I=\frac{P T R}{100}$. If $P=₹ 900, T=2$ years; and $R=5 \%$, find the simple interest.

3. ジ

-

.... (ii)

$$
\begin{aligned}
& \text { (i) } 8 \mathrm{x}, 5 \mathrm{x} \\
& \text { (ii) } 5 \mathrm{p}, 11 \mathrm{p} \\
& \text { (iii) } 13 m^{2}, 2 m^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (i) }-x \\
& \text { (ii) } 4 x \\
& \text { (iii) }-2 x^{2} \\
& \text { 5=-1 } \\
& \text { 6- } 6
\end{aligned}
$$

> (i) $4 x-3 y+5$
> (ii) $x^{2}+y^{2}$
> (iii) $x y+3 y-9$
-8
10. The relationship between speed (s), distance (d) and time (t) is given by $\mathrm{s}=\frac{\mathrm{d}}{\mathrm{t}}$. Find the value of s , if $\mathrm{d}=135$ meters and $\mathrm{t}=10$ seconds.

10.9 Addition of algebraic expressions

Consider the following problems.

1. Sameera has some mangoes. Padma has 9 more than Sameera. Mary says that she has 4 more mangoes than the number of mangoes Sameera and Padma have together. How many mangoes does Mary have?

Since we do not know the number of mangoes that Sameera has, we shall take them to be x mangoes.

Padma has 9 more mangoes than Sameera.
Therefore, the number of mangoes Padma has $=x+9$ mangoes
Mary has 4 more mangoes than those Sameera and Padma have together.
Therefore, the number of mangoes Mary has $=x+(x+9)+4$ mangoes

$$
=2 x+13 \text { mangoes }
$$

2. In a Mathematics test Raju got 11 marks more than Imran. Rahul got 4 marks less than what Raju and Imran got together. How much did Rahul score?

Since we do not know Imran's marks, we shall take them to be x marks.
Hint: Why are we taking Imran's marks as x ?
Raju got 11 more marks than Imran, therefore marks scored by Raju $=x+11$ marks
Rahul got 4 marks less than the marks Raju and Imran scored together $=x+x+11-4$ marks

$$
=2 x+7 \text { marks }
$$

In both the situations given above, we have to add and subtract algebraic expressions. There are number of real life situations in which we need to do this. Let us now learn how to add or subtract algebraic expressions.

اكرسم d=135 كمنٌ

Addition of algebraic expressions． 10.9

$$
\begin{aligned}
& \text {; } \\
& \text { سنجيهـ צا" }
\end{aligned}
$$

$$
\begin{aligned}
& \text { تمّن معلومْهِ }
\end{aligned}
$$

$$
\begin{aligned}
& x+(x+9)+4=\text { اسطِّم״ } \\
& \text { 「 }=2 x+13
\end{aligned}
$$

ريم

$$
\begin{aligned}
& \text { و } \\
& \text { - } \text { 比 }=2 x+7=
\end{aligned}
$$

10.9.1 Addition of Expressions

The sum of expressions can be obtained by adding like terms. This can be done in two ways.
(i) Column or Vertical Method
(ii) Row or Horizontal Method

(i) Column or Vertical Method

Example 4: Add $3 x^{2}+5 x-4$ and $6+6 x^{2}$

Solution:

S. No.	Steps	Process
1	Write the expressions in standard form if necessary	(i) $3 x^{2}+5 x-4=3 x^{2}+5 x-4$ (ii) $6+6 x^{2}=6 x^{2}+6$
	Write one expression below the other such that	$3 x^{2}+5 x-4$ the like terms come in the same column
3.	Add the like terms column wise and write the	
	result just below the concerned column	$3 x^{2}+5 x-4$ $6 x^{2}+6$

Example 5: Add $5 x^{2}+9 x+6,4 x+3 x^{2}-8$ and $5-6 x$
Solution: Step 1:

$$
\begin{aligned}
& 5 x^{2}+9 x+6=5 x^{2}+9 x+6 \\
& 4 x+3 x^{2}-8=3 x^{2}+4 x-8 \\
& 5-6 x=-6 x+5
\end{aligned}
$$

Step 2 :

$$
\begin{array}{r}
5 x^{2}+9 x+6 \\
3 x^{2}+4 x-8 \\
-6 x+5
\end{array}
$$

Step 3:

$$
\begin{array}{r}
5 x^{2}+9 x+6 \\
3 x^{2}+4 x-8 \\
-6 x+5 \\
\hline 8 x^{2}+7 x+3
\end{array}
$$

Addition of Expression 10.9(1)
 column or vertical method (i) 6

 -

pز	光	ن***
(i) $3 x^{2}+5 x-4=3 x^{2}+5 x-4$ (ii) $6+6 x^{2}=6 x^{2}+6$		1
$\begin{aligned} & 3 x^{2}+5 x-4 \\ & 6 x^{2}+6 \end{aligned}$		2
$\begin{aligned} & 3 x^{2}+5 x-4 \\ & 6 x^{2}+6 \\ & \hline \end{aligned}$	 	3
$9 x^{2}+5 x-2$		

 $5 x^{2}+9 x+6=5 x^{2}+9 x+6$ رحل 1

$$
4 x+3 x^{2}-8=3 x^{2}+4 x-8
$$

$$
5-6 x=-6 x+5
$$

$$
5 x^{2}+9 x+6 \text { مرلم }
$$

$$
3 x^{2}+4 x-8
$$

$$
-6 x+5
$$

$$
\begin{array}{r}
5 x^{2}+9 x+6: 3 \\
3 x^{2}+4 x-8 \\
-6 x+5 \\
\hline 8 x^{2}+7 x+3 \\
\hline
\end{array}
$$

(ii) Row or Horizontal Method

Example 6: Add $3 x^{2}+5 x-4$ and $6+6 x^{2}$

S. No.	Steps	Process
1	Write all expressions with addition + symbol in between them.	$3 x^{2}+5 x-4+6+6 x^{2}$
2	Re-arrange the term by grouping the like terms together.	$\left(3 x^{2}+6 x^{2}\right)+(5 x)+(-4+6)$
3	Simplify the coefficients	$(3+6) x^{2}+5 x+2$
4	Write the resultant expression in standard form.	$9 x^{2}+5 x+2$

Do This

1. Add the following expressions.
(i) $x-2 y, 3 x+4 y$
(ii) $4 m^{2}-7 n^{2}+5 m n, 3 n^{2}+5 m^{2}-2 m n$
(iii) $3 a-4 b, 5 c-7 a+2 b$

10.9.2 Subtraction of algebraic expressions

10.9.2(a)Additive inverse of an expression

If we take a positive number ' 9 ' then there exists ' -9 ' such that $9+(-9)=0$.
Here we say that ' -9 ' is the additive inverse of ' 9 ' and ' 9 ' is the additive inverse of ' -9 '.
Thus, for every positive number, there exists a negative number such that their sum is zero. These two numbers are called the additive inverse of the each other.

Is this true for algebraic expressions also? Does every algebraic expression have an additive inverse?

If so, what is the additive inverse of ' $3 x$ '?
For ' $3 x$ ' there also exists ' $-3 x$ ' such that $3 x+(-3 x)=0$
Therefore, ' $-3 x$ ' is the additive inverse of ' $3 x$ ' and ' $3 x$ ' is the additive inverse of ' $-3 x$ '.
Thus, for every algebraic expression there exists another algebraic expression such that their sum is zero. These two expressions are called the additive inverse of the each other.

(i) $x-2 y, 3 x+4 y$
(ii) $4 m^{2}-7 n^{2}+5 m n, \quad 3 m^{2}+5 m^{2}-2 m n$
(iii) $3 \mathrm{a}-4 \mathrm{~b}, 5 \mathrm{c}-7 \mathrm{a}+2 \mathrm{~b}$

10.9.2 (a)

$3 x+(-3 x)=0$ = $63 x$
اسلـد

Example 7: Find the additive inverse of the expression ($6 x^{2}-4 x+5$).
Solution: Additive inverse of $6 x^{2}-4 x+5=-\left(6 x^{2}-4 x+5\right)=-6 x^{2}+4 x-5$

10.9.2(b) Subtraction

Let A and B be two algebraic expressions, then $\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$
i.e. to subtract B from A, we add the additive inverse of B to A.

Now, let us subtract algebraic expressions using both column and row methods-

(i) Column or Vertical Method

Example 8: Subtract $3 a+4 b-2 c$ from $3 c+6 a-2 b$

Solution:

S. No.	Steps	Process
1	Write both expressions in standard form if necessary	$3 c+6 a-2 b=6 a-2 b+3 c$ $3 a+4 b-2 c=3 a+4 b-2 c$
2	Write the expressions one below the other such that the expression to be subtracted comes in the second row and the like terms come one below the other.	$6 a-2 b+3 c$ $3 a+4 b-2 c$
3	Change the sign of every term of the expression in the second row to get the additive inverse of the expression	$6 a-2 b+3 c$ $(-)$ $3 a+4 b-2 c$ 4Add the like terms, column-wise and write the result below the concerned column.
$6 a-2 b+3 c$ $3 a+4 b-2 c$ $(-)$ $(+)$		

Example 9: Subtract $4+3 m^{2}$ from $4 m^{2}+7 m-3$
Solution: \quad Step 1: $4 m^{2}+7 m-3=4 m^{2}+7 m-3$

$$
4+3 m^{2}=3 m^{2}+4
$$

Step 2: $4 m^{2}+7 m-3$

$$
3 m^{2} \quad+4
$$

صن:
10.9.2(b)

يتّ بهارت

كم ملميانشافبا
-

سلـلـنثان	اقرام	人
1	,وونو بعا	$\begin{aligned} & 3 c+6 a-2 b=6 a-2 b+3 c \\ & 3 a+4 b-2 c=3 a+4 b-2 c \end{aligned}$
2		$\begin{aligned} & 6 a-2 b+3 c \\ & 3 a+4 b-2 c \end{aligned}$
3	تاكيكارت6 6 ?	$\begin{gathered} 6 a-2 b+3 c \\ 3 a+4 b-2 c \\ (-)(-) \quad(+) \\ \hline \end{gathered}$
4		$\begin{gathered} 6 a-2 b+3 c \\ 3 a+4 b-2 c \\ \frac{(-) \quad(-) \quad(+)}{3 a-6 b+5 c} \end{gathered}$

$$
\begin{aligned}
& 4 m^{2}+7 m-3=4 m^{2}+7 m-3-1 \text { رِم } \\
& 4+3 m^{2}=3 m^{2}+4 \\
& \text { قرم } 4 m^{2}+7 m-3-2 m^{2} \\
& 3 m^{2} \quad+4
\end{aligned}
$$

Step 3: $4 m^{2}+7 m-3$
$3 m^{2}+4$

Step 4: $4 m^{2}+7 m-3$
$3 m^{2}+4$

$$
m^{2}+7 m-7
$$

(ii) Row or Horizontal Method

Example 10 : Subtract $3 a+4 b-2 c$ from $3 c+6 a-2 b$
Solution:

S. No.	Steps	Process
1	Write the expressions in one row with the expression to be subtracted in a bracket with assigning negative sign to it.	$3 c+6 a-2 b-(3 a+4 b-2 c)$
2	Add the additive inverse of the second expression to the first expression	$3 c+6 a-2 b-3 a-4 b+2 c$
3	Group the like terms and add or subtract (as the case may be)	$(3 c+2 c)+(6 a-3 a)+(-2 b-4 b)$ $=5 c+3 a-6 b$
4	Write in standard form.	$3 a-6 b+5 c$

Example 11 : Subtract $3 m^{3}+4$ from $6 m^{3}+4 m^{2}+7 m-3$
Solution:
Step 1: $6 m^{3}+4 m^{2}+7 m-3-\left(3 m^{3}+4\right)$
Step 2: $6 m^{3}+4 m^{2}+7 m-3-3 m^{3}-4$

Step 3: $\left(6 m^{3}-3 m^{3}\right)+4 m^{2}+7 m-3-4$

$$
=3 m^{3}+4 m^{2}+7 m-7
$$

Step 4: $3 m^{3}+4 m^{2}+7 m-7$

$4 m^{2}+7 m-3$	قّم3-
$3 m^{2}+4$	
- -	
$4 m^{2}+7 m-3$	قّم4-
$3 m^{2}+4$	
- -	
$m^{2}+7 m-7$	

سلـلـنثان	اقراها	-
1	 	$3 c+6 a-2 b-(3 a+4 b-2 c)$
2	(و)	$3 c+6 a-2 b-3 a-4 b+2 c$
3		$\begin{aligned} & (3 c+2 c)+(6 a-3 a)+(-2 b-4 b) \\ & =5 c+3 a-6 b \end{aligned}$
4		$3 a-6 b+5 c$

$$
6 m^{3}+4 m^{2}+7 m-3-3 m^{3}-4-2 \text { قرم }
$$

$$
\text { قةم3-4 }\left(6 m^{3}-3 m^{3}\right)+4 m^{2}+7 m-3-4
$$

$$
=3 m^{3}+4 m^{2}+7 m-7
$$

$$
\text { قرم4-7 -7 } 3 m^{3}+4 m^{2}+7 m-3
$$

$$
\begin{aligned}
& \text { مثال11 } \\
& \text { قر }
\end{aligned}
$$

Exercise - 4

1. Add the following algebraic expressions using both horizontal and vertical methods. Did you get the same answer with both methods.
(i) $x^{2}-2 x y+3 y^{2} ; 5 y^{2}+3 x y-6 x^{2}$
(ii) $4 a^{2}+5 b^{2}+6 a b ; 3 a b ; 6 a^{2}-2 b^{2} ; 4 b^{2}-5 a b$
(iii) $2 x+9 y-7 z ; 3 y+z+3 x ; 2 \mathrm{x}-4 \mathrm{y}-\mathrm{z}$
(iv) $2 x^{2}-6 x+3 ;-3 x^{2}-x-4 ; 1+2 x-3 x^{2}$
2. Simplify: $2 x^{2}+5 x-1+8 x+x^{2}+7-6 x+3-3 x^{2}$
3. Find the perimeter of the following rectangle?

4. Find the perimeter of a triangle whose sides are $2 a+3 b, b-a, 4 a-2 b$.

5. Subtract the second expression from the first expression
(i) $2 a+b, a-b$
(ii) $x+2 y+z,-x-y-3 z$
(iii) $3 a^{2}-8 a b-2 b^{2}, 3 a^{2}-4 a b+6 b^{2}$
(iv) $4 p q-6 p^{2}-2 q^{2}, 9 p^{2}$
(v) $7-2 x-3 x^{2}, 2 x^{2}-5 x-3$
(vi) $5 x^{2}-3 x y-7 y^{2}, 3 x^{2}-x y-2 y^{2}$
(vii) $6 m^{3}+4 m^{2}+7 m-3,3 m^{3}+4$
6. Subtract the sum of $x^{2}-5 x y+2 y^{2}$ and $y^{2}-2 x y-3 x^{2}$ from the sum of $6 x^{2}-8 x y-y^{2}$ and $2 x y-2 y^{2}-x^{2}$.
7. What should be added to $1+2 x-3 x^{2}$ to get $x^{2}-x-1$?
8. What should be taken away from $3 x^{2}-4 y^{2}+5 x y+20$ to get $-x^{2}-y^{2}+6 x y+20$?

4- j

 كُـِّعْ
(i) $x^{2}-2 x y+3 y^{2} ; 5 y^{2}+3 x y-6 x^{2}$
(ii) $4 a^{2}+5 b^{2}+6 a b ; 3 a b ; 6 a^{2}-2 b^{2} ; 4 b^{2}-5 a b$
(iii) $2 x+9 y-7 z ; 3 y+z+3 x ; 2 x-4 y-z$
(iv) $2 x^{2}-6 x+3 ;-3 x^{2}-x-4 ; 1+2 x-3 x^{2}$

$$
\begin{aligned}
& 2 x^{2}+5 x-1+8 x+x^{2}+7-6 x+3-3 x^{2} \text {-2 } \\
& \text { - } 5
\end{aligned}
$$

(i) $2 \mathrm{a}+\mathrm{b}, \mathrm{a}-\mathrm{b} \quad$ (ii) $x+2 \mathrm{y}+\mathrm{z},-x-\mathrm{y}-3 \mathrm{z}$
(iii) $3 a^{2}-8 a b-2 b^{2}, 3 a^{2}-4 a b+6 b^{2}$
(iv) $4 p q-6 p^{2}-2 q^{2}, 9 p^{2}$
(v) $7-2 x-3 x^{2}, 2 x^{2}-5 x-3$
(vi) $5 x^{2}-3 x y-7 y^{2}, 3 x^{2}-x y-2 y^{2}$
(vii) $6 \mathrm{~m}^{3}+4 \mathrm{~m}^{2}+7 \mathrm{~m}-3,3 \mathrm{~m}^{3}+4$

7
8-
9. The sum of 3 expressions is $8+13 a+7 a^{2}$. Two of them are $2 a^{2}+3 a+2$ and $3 a^{2}-4 a+1$. Find the third expression.
10. If $\mathrm{A}=4 x^{2}+y^{2}-6 x y$;
$\mathrm{B}=3 y^{2}+12 x^{2}+8 x y ;$
$\mathrm{C}=6 x^{2}+8 y^{2}+6 x y$
Find (i) $\mathrm{A}+\mathrm{B}+\mathrm{C}$
(ii) $(\mathrm{A}-\mathrm{B})-\mathrm{C}$
(iii) $2 \mathrm{~A}+\mathrm{B}$
(iv) $\mathrm{A}-3 \mathrm{~B}$

Looking Back

- An algebraic expression is a single term or a combination of terms connected by the symbols '+' (plus) or ' - ' (minus).
- If every term of an expression is a constant term, then the expression is called a numerical expression. If an expression has at least one algebraic term, then the expression is called
 an algebraic expression.
- An algebraic expression contaning one term is called a monomial. An algebraic expression contaning two unlike terms is called a binomial. An algebraic expression contaning three unlike terms is called a trinomial. An algebraic expression contaning two or more unlike terms is called a multinomial.
- The sum of all the exponents of the variables in a monomial is called the degree of the term or degree of monomial.
- The degree of any constant term is zero.
- The highest of the degrees of all the terms of the expression is called the degree of the expression.
- If no two terms of an expression are alike then the expression is said to be in its simplified form.
- In an expression, if the terms are arranged in a manner such that the degrees of the terms are in descending order then the expression is said to be in standard form.
- The sum of two or more like terms is a like term with a numerical coefficient equal to the sum of the numerical coefficients of all the like terms.
- The difference between two like terms is a like term with a numerical coefficient equal to the difference between the numerical coefficients of the two like terms.
$\mathrm{A}=4 x^{2}+\mathrm{y}^{2}-6 x y ;$
$\mathrm{B}=3 \mathrm{y}^{2}+12 x^{2}+8 x y ;$
$\mathrm{C}=6 x^{2}+8 \mathrm{y}^{2}+6 x y$
（A－B）－C
$\mathrm{A}+\mathrm{B}+\mathrm{C}$（i）

模 \％

－
放
 ك

放

POWERS AND EXPONENTS

$?$

11.0 Introduction

The population of India according to 2011 census is about $120,00,00,000$
The approximate distance between the sun and the earth is $15,00,00,000 \mathrm{~km}$.
The speed of the light in vacuum is about $30,00,00,000 \mathrm{~m} / \mathrm{sec}$.
The population of Andhra Pradesh according to 2011 census is about 8,50,00,000.
These are all very large numbers. Do you find it easy to read, write and understand such large numbers? No, certainly not.

Thus, we need a way in which we can represent such larger numbers in a simpler manner. Exponents help us in doing so. In this chapter you will learn more about exponents and the laws of exponents.

11.1 Exponential Form

Let us consider the following repeated additions:

$$
\begin{aligned}
& 4+4+4+4+4 \\
& 5+5+5+5+5+5 \\
& 7+7+7+7+7+7+7+7
\end{aligned}
$$

We use multiplication to shorten the representation of repeated additions by writing $5 \times 4,6 \times 5$ and 8×7 respectively.

Now can we express repeated multiplication of a number by itself in a simpler way?
Let us consider the following illustrations.
The population of Bihar as per the 2011 Census is about $10,00,00,000$.
Here 10 is multiplied by itself for 8 times i.e. $10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$.
So we can write the population of Bihar as 10^{8}. Here 10 is called the base and 8 is called the exponent. 10^{8} is said to be in exponential form and it is read as 10 raised to the power of 8.

The speed of light in vacuum is $30,00,00,000 \mathrm{~m} / \mathrm{sec}$. This is expressed as $3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$. in exponential form. In $3 \times 10^{8}, 10^{8}$ is read as ' 10 raised to the power of 8 '. 10 is the base and 8 is the exponent.

11

قوتاوروّقنا
 Powers and Exponents

- 11.0

 اسلِّان \%
 11.1

$$
4+4+4+4+4
$$

$$
5+5+5+5+5
$$

$$
7+7+7+7+7+7+7+7
$$

The approximate distance between the sun and the earth is $15,00,00,000 \mathrm{~km}$. This is expressed as $15 \times 10^{7} \mathrm{~km}$ in exponential form. In $10^{7}, 10$ is the base and 7 is the exponent.

The population of Andhra Pradesh according to 2011 census is about $8,50,00,000$. This is expressed as 85×10^{6} in exponential form. 10^{6} is read as ' 10 raised to the power of 6 '. Here 10 is the base and 6 is the exponent.

We can also use exponents in writing the expanded form of a given number for example the expanded form of $36584=(3 \times 10000)+(6 \times 1000)+(5 \times 100)+(8 \times 10)+(4 \times 1)$

$$
=\left(3 \times 10^{4}\right)+\left(6 \times 10^{3}\right)+\left(5 \times 10^{2}\right)+\left(8 \times 10^{1}\right)+(4 \times 1)
$$

Do This

1. Write the following in exponential form. (values are rounded off)
(i) Total surface area of the Earth is $510,000,000$ square kilometers.
(ii) Population of Rajasthan is approximately $7,00,00,000$

(iii) The approximate age of the Earth is 4550 million years.
(iv) 1000 km in meters
2. Express (i) 48951 (ii) 89325 in expanded form using exponents.

11.1.1 Exponents with other bases

So far we have seen numbers whose base is 10 . However, the base can be any number.
For example $81=3 \times 3 \times 3 \times 3=3^{4}$
Here 3 is the base and 4 is the exponent.
Similarly, $\quad 125=5 \times 5 \times 5=5^{3}$
Here 5 is the base and 3 is the exponent.

Example 1: Which is greater 3^{4} or 4^{3} ?

$$
\begin{aligned}
& 3^{4}=3 \times 3 \times 3 \times 3=81 \\
& 4^{3}=4 \times 4 \times 4=64
\end{aligned}
$$

$$
81>64
$$

Therefore, $3^{4}>4^{3}$

红 $36584=(3 \times 10000)+(6 \times 1000)+(5 \times 100)+(8 \times 10)+(4 \times 1)$
$=\left(3 \times 10^{4}\right)+\left(6 \times 10^{3}\right)+\left(5 \times 10^{2}\right)+\left(8 \times 10^{1}\right)+(4 \times 1)$
（i） 48951 （ii） 89325 －2
11．1．1
ثندرج الا مثالون بينم $81=3 \times 3 \times 3 \times 3=3^{4}$ 信

$$
125=5 \times 5 \times 5=5^{3} \text { - اजى }
$$

ثضل1:-ـ

$$
\begin{gathered}
3^{4}=3 \times 3 \times 3 \times 3=81 \\
4^{3}=4 \times 4 \times 4=64 \\
81>64 \\
3^{4}>4^{3} \\
3^{4}>4^{3} \text { 滥 }
\end{gathered}
$$

$$
\begin{aligned}
& \text { - } 1000 \text { (iv) }
\end{aligned}
$$

Do This

1. Is 3^{2} equal to 2^{3} ? Justity.
2. Write the following numbers in exponential form. Also state the
(a) base
(b)exponent and (c) how it is read.

(i) 32
(ii) 64
(iii) 256
(iv) 243
(v) 49

Squared and cubed

When any base is raised to the power 2 or 3 , it has a special name.
$10^{2}=10 \times 10$ and is read as ' 10 raised to the power 2 ' or ' 10 squared'. Similarly, $4^{2}=4 \times 4$ and can be read as ' 4 raised to the power of 2 ' or ' 4 squared'.
$10 \times 10 \times 10=10^{3}$ is read as ' $\mathbf{1 0}$ raised to the power $\mathbf{3 '}^{\prime}$ or ' $\mathbf{1 0}$ cubed '.
Similarly, $6 \times 6 \times 6=6^{3}$ and can be read as ' 6 raised to the power 3' or ' 6 cubed'.

In general, we can take any positive number 'a' as the base and write.
$a \times a \quad=a^{2} \quad$ (this is read as 'a raised to the power of 2 ' or 'a squared')
$a \times a \times a \quad=a^{3} \quad$ (this is read as 'a raised to the power of 3 ' or 'a cubed')
$a \times a \times a \times a=a^{4} \quad$ (this is read as 'a raised to the power of 4')
\qquad $=a^{5}($ \qquad)
\qquad

Thus, we can say that $a \times a \times a \times a \times a \times a \times$ \qquad ' m ' times $=a^{m}$ where ' a ' is the base and ' m ' is the exponent.

Do This

1. Write the expanded form of the following.
(i) p^{7}
(ii) l^{4}
(iii) s^{9}
(iv) d^{6}
(v) z^{5}
2. Write the following in exponential form.
(i) $a \times a \times a \times$................. 'l' times

(iii) $q \times q \times q \times q \times q$ \qquad 15 times
(iv) $r \times r \times r \times$ \qquad ' b ' times

-

(i) 32
(ii) 64
(iii) 256
(iv) 243
(v) 49

منا ورمكب:

($10 \times 10=10^{2}$
22

- $10 \times 10 \times 10=10^{3}$

$a \times a=a^{2}$
(

$$
a \times a \times a=a^{3}
$$

(
$a \times a \times a \times a=a^{4}$
()
) $\quad a^{5}=$ \qquad
) $a^{6}=$

(i) p^{7}
(ii) l^{4}
(iii) s^{9}
(iv) d^{6}
(v) z^{5}

$$
\begin{align*}
& a \times a \times a \times a \times a \times \text {. } \tag{i}\\
& 5 \times 5 \times 5 \times 5 \times 5 \times \\
& \text { n } \\
& \mathrm{q} \times \mathrm{q} \times \mathrm{q} \times \mathrm{q} \times \mathrm{q} \times \text {. } \\
& \mathrm{r} \times \mathrm{r} \times \mathrm{r} \times \mathrm{r} \times \mathrm{r} \times \ldots \ldots \ldots \ldots . .
\end{align*}
$$

11.2 Writing a number in exponential form through prime factorization.

Let us express the following numbers in the exponential form using prime factorization.
(i) 432
(ii) 450

Solution (i): $\quad 432=2 \times 216$

$$
=2 \times 2 \times 108
$$

$$
=2 \times 2 \times 2 \times 54
$$

$$
=2 \times 2 \times 2 \times 2 \times 27
$$

$$
=2 \times 2 \times 2 \times 2 \times 3 \times 9
$$

$$
=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3
$$

$$
=(2 \times 2 \times 2 \times 2) \times(3 \times 3 \times 3)
$$

$$
=2^{4} \times 3^{3}
$$

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

Therefore, $432=2^{4} \times 3^{3}$
(ii) $450=2 \times 225$
$=2 \times 3 \times 75$
$=2 \times 3 \times 3 \times 25$
$=2 \times 3 \times 3 \times 5 \times 5$
$=2 \times 3^{2} \times 5^{2}$

2	450
3	225
3	75
5	25
5	5
	1

Therefore, $450=2 \times 3^{2} \times 5^{2}$

Do This

Write the following in exponential form using prime factorization.
(i) 2500
(ii) 1296
(iii) 8000
(iv) 6300

Exercise - 1

Write the base and the exponent in each case. Also, write the term in the expanded form.
(i) 3^{4}
(ii) $(7 x)^{2}$
(iii) $(5 a b)^{3}$
(iv) $(4 y)^{5}$
2. Write the exponential form of each expression.
(i) $7 \times 7 \times 7 \times 7 \times 7$
(ii) $3 \times 3 \times 3 \times 5 \times 5 \times 5 \times 5$
(iii) $2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5$

11.2

450 （ii）
432 （i）

2	432
2	216
2	108
2	54
3	27
3	9
3	3
	1

$432=2 \times 216$
$=2 \times 2 \times 108$
$=2 \times 2 \times 2 \times 54$
$=2 \times 2 \times 2 \times 2 \times 27$
$=2 \times 2 \times 2 \times 2 \times 3 \times 9$
$=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3$
$=(2 \times 2 \times 2 \times 2) \times(3 \times 3 \times 3)$
$=2^{4} \times 3^{3}$
$432=2^{4} \times 3^{3}$ 乙 p 1
（ii） $450=2 \times 225$

2	450
3	225
3	75
5	25
5	5
	1

$$
=2 \times 3 \times 75
$$

$$
=2 \times 3 \times 3 \times 25
$$

$$
=2 \times 3 \times 3 \times 5 \times 5
$$

$$
=2 \times 3^{2} \times 5^{2}
$$

$$
\text { (in) } 450=2 \times 3^{2} \times 5^{2}
$$

منردجز
6300 （iv） 8000 （iii）$\quad 1296$（ii） 2500 （i）

1－シ

（i） 3^{4}
（ii）$(7 x)^{2}$
（iii）$(5 a b)^{3}$
（iv）$(4 y)^{5}$

（i） $7 \times 7 \times 7 \times 7 \times 7$
（ii） $3 \times 3 \times 3 \times 5 \times 5 \times 5 \times 5$
（iii） $2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 5$
3. Express the following as the product of exponents through prime factorization.
(i) 288
(ii) 1250
(iii) 2250
(iv) 3600
(v) 2400
4. Identify the greater number in each of the following pairs.
(i) 2^{3} or 3^{2}
(ii) 5^{3} or 3^{5}
(iii) 2^{8} or 8^{2}
5. If $a=3, b=2$ find the value of (i) $a^{b}+b^{a}$ (ii) $a^{a}+b^{b} \quad$ (iii) $(a+b)^{b} \quad$ (iv) $(a-b)^{a}$

11.3 Laws of exponents

When we multiply terms with exponents we use some rules to find the product easily. These rules have been discussed here.

11.3.1 Multiplying terms with the same base

Example 2: $2^{4} \times 2^{3}$
Solution: $\quad 2^{4} \times 2^{3}=(2 \times 2 \times 2 \times 2) \times(2 \times 2 \times 2)$

$$
=\underbrace{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}_{7 \text { times }}
$$

$=2^{7}$ and this is same as 2^{4+3}

$$
(\text { as } 4+3=7)
$$

Therefore, $2^{4} \times 2^{3}=2^{4+3}$
Example 3: $5^{2} \times 5^{3}$
Solution :

$$
5^{2} \times 5^{3}=\underbrace{5 \times 5}_{2 \text { times }}) \times(\underbrace{5 \times 5 \times 5}_{3 \text { times }})
$$

$$
=5^{5} \text { and this is same as } 5^{2+3} \quad(\text { as } 2+3=5)
$$

Therefore, $5^{2} \times 5^{3}=5^{2+3}$

Do This

Find the values of $2^{4}, 2^{3}$ and 2^{7}
verify whether $2^{4} \times 2^{3}=2^{7}$
Find the values of $5^{2}, 5^{3}$ and 5^{5} and verify whether $5^{2} \times 5^{3}=5^{5}$

（i） 288
（ii） 1250
（iii） 2250
（iv） 3600
（v） 2400

（i） $2^{3}\left\lfloor 3^{2}\right.$
（ii） $5^{3} \backslash 3^{5}$
（iii） $2^{8} \backslash 8^{2}$
（i）$a^{b}+b^{a}$
（ii）$a^{a}+b^{b}$
（iii）$(a+b)^{b}$
（iv）$(a-b)^{a}$

 ，

$$
(4+3=7)
$$

$$
5^{2} \times 5^{3}-3
$$

$$
5^{2} \times 5^{3}=(5 \times 5) \times(5 \times 5 \times 5) \quad: \quad{ }^{0}
$$

تّنْمتب

$$
=5 \times 5 \times 5 \times 5 \times 5
$$

5متج

$$
(2+3=5)
$$

$5^{2} \times 5^{3}=5^{2+3}=5^{5}$

23 اور $2^{3} 2^{4}$

$$
\begin{aligned}
& \text { 7 } 7 \\
& 2^{7} \\
& 2^{4} \times 2^{3}=2^{4+3} \text { | }
\end{aligned}
$$

$$
\begin{aligned}
& 2^{4} \times 2^{3}: 2 ل \text { 范 } \\
& 2^{4} \times 2^{3}=(2 \times 2 \times 2 \times 2) \times(2 \times 2 \times 2) \quad-: \downarrow \\
& =2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2
\end{aligned}
$$

Example 4: $a^{4} \times a^{5}$

Solution: $\quad a^{4} \times a^{5}=(a \times a \times a \times a) \times(a \times a \times a \times a \times a)$
$=(a \times a \times a)$
$=a^{9}$ and this is same as $a^{4+5} \quad($ as $4+5=9)$
Therefore, $a^{4} \times a^{5}=a^{4+5}$
Based on the above observations we can say that.
$a^{m} \times a^{n}=(a \times a \times a$ ${ }^{\prime} m$ ' times $) \times(a \times a \times a \times$ \qquad .$^{\prime} n^{\prime}$ times $)=a^{m+n}$

For any non-zero integer ' a ', and integers ' m ' and ' n '

$$
a^{m} \times a^{n}=a^{m+n}
$$

Do This

1. \quad Simplify the following using the formula $a^{m} \times a^{n}=a^{m+n}$
(i) $3^{11} \times 3^{9}$
(ii) $\mathrm{p}^{5} \times \mathrm{p}^{8}$
2. Find the appropriate number in place of the symbol '?' in the following.

Let ' k ' be any non zero integer
(i) $\mathrm{k}^{3} \times \mathrm{k}^{4}=\mathrm{k}^{?}$
(ii) $\mathrm{k}^{15} \times \mathrm{k}^{?}=\mathrm{k}^{31}$

11.3.2 Exponent of exponent

Example 5 : Consider ($\left.3^{2}\right)^{3}$
Solution : Here ' 3 ' ' is the base and' 3 ' is the exponent

$$
\begin{array}{rlrl}
\left(3^{2}\right)^{3} & =3^{2} \times 3^{2} \times 3^{2} & \\
& =3^{2+2+2} & & \text { (multplying terms with the same base) } \\
& =3^{6} \text { and this is the same as } 3^{2 \times 3} & & (\text { as } 2 \times 3=6)
\end{array}
$$

Therefore, $\left(3^{2}\right)^{3}=3^{2 \times 3}$

Do This

Compute 3^{6}, cube of 3^{2} and verify whether $\left(3^{2}\right)^{3}=3^{6}$?

يس

$$
\begin{align*}
& \mathrm{p}^{5} \times \mathrm{p}^{8} \text { (ii) } \quad 3^{11} \times 3^{9} \tag{i}
\end{align*}
$$

2 .

$$
\begin{equation*}
\mathrm{k}^{15} \times \mathrm{k}^{?}=\mathrm{k}^{31} \text { (ii) } \mathrm{k}^{3} \times \mathrm{k}^{4}=\mathrm{k}^{?} \tag{i}
\end{equation*}
$$

ت

$$
\begin{aligned}
& \text { ص } \\
& \left(3^{2}\right)^{3}=3^{2} \times 3^{2} \times 3^{2}=3^{2+2+2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { اوري26 } \\
& \therefore\left(3^{2}\right)^{3}=3^{2 \times 3}=3^{6}
\end{aligned}
$$

.

Example 6: Let us consider $\left(4^{5}\right)^{3}$
Solution : $\left(4^{5}\right)^{3}=4^{5} \times 4^{5} \times 4^{5}$

$$
\begin{array}{ll}
=4^{5+5+5} & \text { (multplying terms with the same base) } \\
=4^{15} \text { and this is same as } 4^{5 \times 3} & (\text { as } 5 \times 3=15)
\end{array}
$$

Therefore, $\left(4^{5}\right)^{3}=4^{5 \times 3}$

Example 7: $\left(a^{m}\right)^{4}$

Solution: $\quad\left(a^{m}\right)^{4}=a^{m} \times a^{m} \times a^{m} \times a^{m}$

$$
\begin{aligned}
& =a^{m+m+m+m} \\
& =a^{4 m} \text { and this is same as } a^{m \times 4}
\end{aligned}
$$

(multplying terms with the same base) (as $4 \times m=4 m$)

Therefore, $\left(\mathrm{a}^{\mathrm{m}}\right)^{4}=\mathrm{a}^{\mathrm{m} \times 4}$
Based on all the above we can say that $\left(\mathbf{a}^{m}\right)^{n}=a^{m} \times a^{m} \times a^{m} \ldots . . . n$ times $=a^{m+m+m+\ldots n}$ times

$$
=a^{m n}
$$

For any non-zero integer ' a ' and integers ' m ' and ' n '

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

11.3.3 Exponent of a product

Example 8: Consider $3^{5} \times 4^{5}$
Solution: Here 3^{5} and 4^{5} have the same exponent 5 but different bases.

$$
\begin{aligned}
& 3^{5} \times 4^{5}=(3 \times 3 \times 3 \times 3 \times 3) \times(4 \times 4 \times 4 \times 4 \times 4) \\
& =(3 \times 4) \times(3 \times 4) \times(3 \times 4) \times(3 \times 4) \times(3 \times 4) \\
& =(3 \times 4)^{5}
\end{aligned}
$$

Therefore, $3^{5} \times 4^{5}=(3 \times 4)^{5}$
Example 9: Consider $4^{4} \times 5^{4}$

Solution : Here 4^{4} and 5^{4} have the same exponent 4 but have different bases.

$$
\begin{aligned}
& 4^{4} \times 5^{4}=(4 \times 4 \times 4 \times 4) \times(5 \times 5 \times 5 \times 5) \\
& =(4 \times 4 \times 4 \times 4 \times 5 \times 5 \times 5 \times 5) \\
& =(4 \times 5) \times(4 \times 5) \times(4 \times 5) \times(4 \times 5) \\
& =(4 \times 5)^{4}
\end{aligned}
$$

Therefore, $4^{4} \times 5^{4}=(4 \times 5)^{4}$

$$
\begin{aligned}
& \text {, } \\
& \left(4^{5}\right)^{3}=4^{5} \times 4^{5} \times 4^{5} \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{J}{\wedge}=\left(4^{5}\right)^{3}=4^{5 \times 3}=4^{15}
\end{aligned}
$$

$$
\begin{aligned}
& \left(a^{m}\right)^{4}=a^{m} \times a^{m} \times a^{m} \times a^{m} \\
& =a^{\mathrm{m}+\mathrm{m}+\mathrm{m}+\mathrm{m}} \\
& =\mathrm{a}^{4 \mathrm{~m}}=\mathrm{a}^{\mathrm{m} \times 4} \\
& \therefore\left(a^{m}\right)^{4}=a^{m \times 4}=a^{4 m}
\end{aligned}
$$

$$
\begin{aligned}
& \left(a^{m}\right)^{n}=\left(a^{m} \times a^{m} \times a^{m} \times a^{m} \ldots \ldots \ldots \ldots \nsim n\right)=a^{m+m+m+m \ldots . n \div \nsim}=a^{m n}
\end{aligned}
$$

$$
\begin{aligned}
& \left(a^{m}\right)^{n}=a^{m n}
\end{aligned}
$$

$$
\begin{aligned}
& 3^{5} \times 4^{5}=(3 \times 3 \times 3 \times 3 \times 3) \times(4 \times 4 \times 4 \times 4 \times 4) \\
& =(3 \times 4) \times(3 \times 4) \times(3 \times 4) \times(3 \times 4) \times(3 \times 4) \\
& =3^{5} \times 4^{5}=(3 \times 4)^{5} \\
& \text { 范 }
\end{aligned}
$$

$$
\begin{aligned}
& 4^{4} \times 5^{4}=(4 \times 4 \times 4 \times 4) \times(5 \times 5 \times 5 \times 5) \\
& =(4 \times 5) \times(4 \times 5) \times(4 \times 5) \times(4 \times 5) \\
& =(4 \times 5)^{4} \\
& \therefore 4^{4} \times 5^{4}=(4 \times 5)^{4}
\end{aligned}
$$

Example 10: Consider $p^{7} \times q^{7}$
Solution : \quad Here p^{7} and q^{7} have the same exponent 7 but different bases.

$$
\begin{aligned}
p^{7} \times q^{7} & =(p \times p \times p \times p \times p \times p \times p) \times(q \times q \times q \times q \times q \times q \times q) \\
& =(p \times p \times p \times p \times p \times p \times p \times q \times q \times q \times q \times q \times q \times q) \\
& =(p \times q) \times(p \times q) \\
& =(p \times q)^{7}
\end{aligned}
$$

Therefore, $\mathrm{p}^{7} \times \mathrm{q}^{7}=(\mathrm{p} \times \mathrm{q})^{7}$

Based on all the above we can conclude that $a^{m} \times b^{m}=(a \times b)^{m}=(a b)^{m}$

$$
\begin{aligned}
& \text { For any two non-zero integers ' } a '^{\prime}, b^{\prime} \text { and any positive integer ' } m \text { ' } \\
& \qquad a^{m} \times b^{m}=(a b)^{m}
\end{aligned}
$$

Do This

Simplify the following using the law $a^{m} \times b^{m}=(a \mathrm{~b})^{m}$
(i) $(2 \times 3)^{4}$
(ii) $x^{p} \times y^{p}$
(iii) $a^{8} \times b^{8}$
(iv) $(5 \times 4)^{11}$

11.3.4 Division of exponents

Before discussing division of exponents we will now discuss about negative exponents.

11.3.4(a) Negative exponents

Observe the following pattern.

$2^{5}=32$	3^{5}	$=$	243
$2^{4}=16$	3^{4}	$=$	81
$2^{3}=8$	3^{3}	$=$	27
$2^{2}=4$	3^{2}	$=$	9
$2^{1}=2$	3^{1}	$=$	3
$2^{0}=1$	3^{0}	$=$	1
$2^{-1}=$	$3^{-1}=$		
$($ Hint: halfof 1$)$	(Hint: one-third of 1$)$		
$2^{-2}=$	$3^{-2}=$		

	مث
	(
	ضابط (i) $(2 \times 3)^{4}$ (ii) $x^{\mathrm{p}} \times y^{\mathrm{p}}$ (iii) $a^{8} \times b^{8}$ (iv) $(5 \times 4)^{11}$
	$\begin{aligned} & 2^{5}=32 \\ & 2^{4}=16 \\ & 2^{3}=8 \\ & 2^{2}=4 \\ & 2^{1}=2 \\ & 2^{0}=1 \\ & 2^{-1}= \\ & (1) \\ & 2^{-2}= \end{aligned}$ $3^{5}=243$ $3^{4}=81$ $3^{3}=27$ $3^{2}=9$ $3^{1}=3$ $3^{0}=1$ $3^{-1}=$ $3^{-2}=$

What part of 32 is 16 ?
What is the difference between 2^{5} and 2^{4} ?
You will find that each time the exponent decreases by 1,the value becomes half of the previous. From the above patterns we can say.
$2^{-1}=\frac{1}{2}$ and $\quad 2^{-2}=\frac{1}{4}$
$3^{-1}=\frac{1}{3}$ and $\quad 3^{-2}=\frac{1}{9}$
Furthermore, we can see that $2^{-2}=\frac{1}{4}=\frac{1}{2^{2}}$

similarly, $3^{-1}=\frac{1}{3}$ and $3^{-2}=\frac{1}{9}=\frac{1}{3^{2}}$

$$
\begin{aligned}
& \text { For any non -zero integer ' } \boldsymbol{a} \text { ' and any integer ' } \boldsymbol{n} \text { ' } \\
& \qquad a^{-n}=\frac{1}{a^{n}}
\end{aligned}
$$

Do This

1. Write the following, by using $a^{-n}=\frac{1}{a^{n}}$, with positive exponents.
(i) x^{-7}
(ii) a^{-5}
(iii) 7^{-5}
(iv) 9^{-6}

11.3.4(b) Zero exponents

In the earlier discussion we have seen that
$2^{0}=1$
$3^{0}=1$
Similarly we can say
$4^{0}=1$
$5^{0}=1$ and so on
Thus for non zero integer ' a ', $a^{0}=1$

$$
\begin{aligned}
& 2^{-1}=\frac{1}{2} \quad 2^{-2}=\frac{1}{4} \quad \text { اور } \\
& 3^{-1}=\frac{1}{3} \quad 3^{-2}=\frac{1}{9}
\end{aligned}
$$

$$
\begin{aligned}
& 3^{-1}=\frac{1}{3} \quad 3^{-2}=\frac{1}{9}=\frac{1}{3^{2}} \quad \text { 乙思 }
\end{aligned}
$$

$$
\begin{aligned}
& a^{-n}=\frac{1}{a^{n}}
\end{aligned}
$$

（in $a^{-n}=\frac{1}{a^{n}} \quad .1$ 9^{-6}（iv） 7^{-5}
（iii）a^{-5}
（ii）x^{-7}
（i）
11．3．4（b）

$$
\begin{aligned}
& 2^{0}=1 \text { ك } \\
& 3^{0}=1 \\
& 4^{0}=1 \quad \text { ا ا } \\
& 5^{0}=1
\end{aligned}
$$

11.3.4(c) Division of exponents having the same base

Example 11: Consider $\frac{7^{7}}{7^{3}}$
Solution: $\quad \frac{7^{7}}{7^{3}}=\frac{7 \times 7 \times 7 \times 7 \times \not 7 \times 7 \times 7}{\nexists \times \not \times 7}=7 \times 7 \times 7 \times 7$

$$
=7^{4} \text { which is same as } 7^{7-3} \quad(\text { as } 7-3=4)
$$

Therefore, $\frac{7^{7}}{7^{3}}=7^{7-3}$
Example 12: Consider $\frac{3^{8}}{3^{3}}$
Solution : $\quad \frac{3^{8}}{3^{3}}=\frac{3 \times 3 \times 3 \times 3 \times 3 \times p \times \neq p \times p}{p \times p \times p}=3 \times 3 \times 3 \times 3 \times 3$

$$
=3^{5} \text { which is same as } 3^{8-3} \quad(\text { as } 8-3=5)
$$

Therefore, $\frac{3^{8}}{3^{3}}=3^{8-3}$
Example 13: Consider $\frac{5^{5}}{5^{8}}$

$\frac{1}{5^{3}}$ which is same as $\frac{1}{5^{8-5}} \quad($ as $8-5=3)$
Therefore, $\frac{5^{5}}{5^{8}}=\frac{1}{5^{8-5}}$
Example 14: Consider $\frac{a^{2}}{a^{7}}$
Solution : $\quad \frac{a^{2}}{a^{7}}=\frac{d \times d}{a \times a \times a \times a \times a \times d \times d}=\frac{1}{a \times a \times a \times a \times a}$

$$
=\frac{1}{a^{5}} \text { which is the same as } \frac{1}{a^{7-2}} \quad(\text { as } 7-2=5)
$$

Therefore, $\frac{a^{2}}{a^{7}}=\frac{1}{a^{7-2}}$
11.3.4(c) $\frac{7^{7}}{7^{3}}$ 芜
-

$$
\frac{5^{5}}{5^{8}} \quad \text { بشل 13: }
$$

$$
(8-5=3)
$$

$$
\text { ¢ } \leqslant \text { كاو } \frac{1}{5^{8-3}} \approx \frac{1}{5^{3}}
$$

$$
\underset{\sim}{\operatorname{L}} \mathrm{I}^{\frac{5^{5}}{5^{8}}}==\frac{1}{5^{8-5}}
$$

$$
\frac{a^{2}}{a^{7}}=\frac{a \times a}{a \times a \times a \times a \times a \times a \times a}=\frac{1}{a \times a \times a \times a \times a}
$$

ل:

$$
\begin{equation*}
\frac{a^{2}}{a^{7}}=\frac{1}{a^{7-2}} \quad \underset{\sim}{\text { u }} \tag{7-2=5}
\end{equation*}
$$

$$
\begin{aligned}
& \text { ᄂ } \\
& \therefore \frac{3^{8}}{3^{3}}=3^{8-3}
\end{aligned}
$$

$$
\begin{align*}
& \frac{7^{7}}{7^{3}}=\frac{7 \times 7 \times 7 \times 7 \times 7 \times 7 \times 7}{7 \times 7 \times 7}=7 \times 7 \times 7 \times 7 \tag{7-3=4}
\end{align*}
$$

$$
\begin{aligned}
& \therefore \frac{7^{7}}{7^{3}}=7^{7-3}=7^{4}
\end{aligned}
$$

Based on all the above examples we can say that-

$$
\frac{a^{m}}{a^{n}}=a^{m-n} \text { if } \boldsymbol{m}>\boldsymbol{n} \text { and } \frac{a^{m}}{a^{n}}=\frac{1}{a^{n-m}} \text { if } \boldsymbol{m}<\boldsymbol{n}
$$

For any non-zero integer ' a ' and integers ' m ' and ' n '

$$
\frac{a^{m}}{a^{n}}=a^{m-n} \quad \text { if } \boldsymbol{m}>\boldsymbol{n} \quad \text { and } \quad \frac{a^{m}}{a^{n}}=\frac{1}{a^{n-m}} \text { if } \boldsymbol{m}<\boldsymbol{n}
$$

What happens when $m=n$? Give your answer.
Example 15: Consider $\frac{4^{3}}{4^{3}}$
Solution: $\quad \frac{4^{3}}{4^{3}}=\frac{4 \times 4 \times 4}{4 \times 4 \times 4}=\frac{1}{1}=1$
Also we know that $\frac{a^{m}}{a^{n}}=a^{m-n}$
$\therefore \frac{4^{3}}{4^{3}}=4^{3-3}=4^{0}=1$ from (1)

Similarly, find $\frac{7^{4}}{7^{4}}$.
What do you observe from above?
Also consider $\frac{a^{4}}{a^{4}}=\frac{a \times a \times a \times a}{a \times a \times a \times a}=1$

But from $\frac{a^{m}}{a^{n}}=a^{m-n}$

We have $\frac{a^{4}}{a^{4}}=a^{4-4}=a^{0}=1$

For any non zero number ' a ' we have $a^{0}=1$.
Observe here $\mathrm{m}, \mathrm{n}(\mathrm{m}=\mathrm{n})$

Thus if $\mathrm{m}=\mathrm{n}$

$$
\frac{a^{m}}{a^{n}}=1
$$

$$
\frac{a^{m}}{a^{n}}=\frac{1}{a^{n-m}} \mathrm{n}>\mathrm{m} \text { اوراگ} \frac{a^{m}}{a^{n}}=a^{m-n} \mathrm{~m}>\mathrm{n} \text { گ }
$$

$\frac{a^{m}}{a^{n}}=\frac{1}{a^{n-m}} \quad \mathrm{n}>\mathrm{m}$ اور $\frac{a^{m}}{a^{n}}=a^{m-n}$ m
اگر m＝n
$\frac{4^{3}}{4^{3}}$
$\times 4 \times 4$
$\times 4 \times 4$
$\times 1$
1
بضال15：تور بيحي ص

$$
\frac{a^{4}}{a^{4}}=\frac{a \times a \times a \times a}{a \times a \times a \times a}=1 \quad \text { ان رُوربيمي }
$$

$$
\frac{a^{m}}{a^{n}}=a^{m-n} \text { ليكنمجانْ بِّ }
$$

$$
\frac{a^{4}}{a^{4}}=a^{4-4}=a^{0}=1
$$

$$
\begin{aligned}
& a^{0}=1 \text { ك ك ك } \\
& \text { (m = n) n } \times \mathrm{m} \\
& \frac{a^{m}}{a^{n}}=1 \mathrm{~m}=\mathrm{n} \quad \text { 風保 }
\end{aligned}
$$

Do This

1. Simplify and write in the form of a^{m-n} or $\frac{1}{a^{n-m}}$.
(i) $\frac{13^{8}}{13^{5}}$
(ii) $\frac{3^{4}}{3^{14}}$
2. Fill the appropriate number in the box.
$\operatorname{Ex}: \frac{8^{8}}{8^{3}}=8^{\sqrt[8-3]{8}}=8^{5]}$
(i) $\frac{12^{12}}{12^{7}}=12 \square=12 \square$
(ii) $\quad \frac{a^{18}}{a^{\square}}=a \square=a^{\boxed{10}}$

11.3.4(c) Dividing terms with the same exponents

Example 16: Consider $\left(\frac{7}{4}\right)^{5}$

Solution: $\quad\left(\frac{7}{4}\right)^{5}=\frac{7}{4} \times \frac{7}{4} \times \frac{7}{4} \times \frac{7}{4} \times \frac{7}{4}$
$=\frac{7 \times 7 \times 7 \times 7 \times 7}{4 \times 4 \times 4 \times 4 \times 4}$
$=\frac{7^{5}}{4^{5}}$
(by the definition of exponent)

Therefore, $\left(\frac{7}{4}\right)^{5}=\frac{7^{5}}{4^{5}}$
Example 17: Consider $\left(\frac{p}{q}\right)^{6}$
Solution: $\quad\left(\frac{p}{q}\right)^{6}=\left(\frac{p}{q}\right) \times\left(\frac{p}{q}\right) \times\left(\frac{p}{q}\right) \times\left(\frac{p}{q}\right) \times\left(\frac{p}{q}\right) \times\left(\frac{p}{q}\right)$
$=\frac{p \times p \times p \times p \times p \times p}{q \times q \times q \times q \times q \times q}$

$$
\begin{gathered}
\text {. } 1 \\
\frac{3^{4}}{3^{14}} \text { (ii) } \frac{1}{a^{n-m}} \mathrm{a}^{\mathrm{m}-\mathrm{n}} \underset{\mathrm{n}}{23^{5}} \text { (i) }
\end{gathered}
$$

$$
\frac{8^{8}}{8^{3}}=8^{\boxed{8-3}}=8^{5}
$$

$$
\begin{equation*}
\frac{a^{18}}{a \square}=a \square=a^{\boxed{10}} \quad \text { (ii) } \frac{12^{12}}{12^{7}}=12 \square=12 \square \tag{i}
\end{equation*}
$$

(c) 11.3.4 (c) ساوكقوواساركانكيتّيم:

$$
\begin{aligned}
& \left(\frac{7}{4}\right)^{5} \quad\left(\frac{7}{4}\right)^{5}=\frac{7}{4} \times \frac{7}{4} \times \frac{7}{4} \times \frac{7}{4} \times \frac{7}{4}: 160 \\
& =\frac{7 \times 7 \times 7 \times 7 \times 7}{4 \times 4 \times 4 \times 4 \times 4} \\
& =\frac{7^{5}}{4^{5}}
\end{aligned}
$$

$$
\left(\frac{7}{4}\right)^{5}=\frac{7^{5}}{4^{5}} \quad \swarrow \quad \text { u}
$$

كر:

$$
\begin{aligned}
\left(\frac{p}{q}\right)^{6} & =\left(\frac{p}{q}\right) \times\left(\frac{p}{q}\right) \times\left(\frac{p}{q}\right) \times\left(\frac{p}{q}\right) \times\left(\frac{p}{q}\right) \times\left(\frac{p}{q}\right): v^{q} \\
& =\frac{p \times p \times p \times p \times p \times p}{q \times q \times q \times q \times q \times q}
\end{aligned}
$$

$$
=\frac{p^{6}}{q^{6}} \quad \text { (By the definition of exponent) }
$$

Therefore, $\left(\frac{p}{q}\right)^{6}=\frac{p^{6}}{q^{6}}$
Based on the above observations we can say that.

$$
\left(\frac{a}{b}\right)^{m}=\frac{a \times a \times a \times a \times \ldots \ldots \ldots \ldots \ldots \times a^{\prime} m^{\prime} \text { times }}{b \times b \times b \times b \times \ldots \ldots \ldots \ldots b^{\prime} m^{\prime} \text { times }}=\frac{a^{m}}{b^{m}}
$$

$$
\text { For any non-zero integers } \mathbf{a}, \mathbf{b} \text { and integer ' } \boldsymbol{m} \text { ' }\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}
$$

Do This

1. Complete the following
(i) $\quad\left(\frac{5}{7}\right)^{3}=\frac{5^{3}}{\square}$
(ii) $\left(\frac{3}{2}\right)^{\square}=\frac{3^{5}}{2^{5}}$
(iii) $\quad\left(\frac{8}{3}\right)^{4}=\frac{\square}{\square \square}$
(iv) $\left(\frac{x}{y}\right)^{11}=\frac{\square}{y^{11}}$

11.3.5 Terms with negative base

Example 18: Evaluate $(1)^{4},(1)^{5},(1)^{7},(-1)^{2},(-1)^{3},(-1)^{4},(-1)^{5}$
Solution: $\quad(1)^{4}=1 \times 1 \times 1 \times 1=1$
$(1)^{5}=1 \times 1 \times 1 \times 1 \times 1=1$
$(1)^{7}=1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1=1$
$(-1)^{2}=(-1) \times(-1)=1$
$(-1)^{3}=(-1) \times(-1) \times(-1)=-1$
$(-1)^{4}=(-1) \times(-1) \times(-1) \times(-1)=1$
$(-1)^{5}=(-1) \times(-1) \times(-1) \times(-1) \times(-1)=-1$

E.

$$
\begin{array}{ll}
\left(\frac{3}{2}\right)^{\square}=\frac{3^{5}}{2^{5}} \text { (ii) } & \left(\frac{5}{7}\right)^{3}=\frac{5^{3}}{\square} \\
\left(\frac{x}{y}\right)^{11}=\frac{\square}{y^{11}} \text { (iv) } & \left(\frac{8}{3}\right)^{4}=\square \tag{iii}
\end{array}
$$

$$
(1)^{4}=1 \times 1 \times 1 \times 1=1
$$

$$
(1)^{5}=1 \times 1 \times 1 \times 1 \times 1=1
$$

$$
(1)^{7}=1 \times 1 \times 1 \times 1 \times 1 \times 1 \times 1=1
$$

$$
(-1)^{2}=(-1) \times(-1)=1
$$

$$
(-1)^{3}=(-1)(-1)(-1)=-1
$$

$$
(-1)^{4}=(-1)(-1)(-1)(-1)=1
$$

$$
(-1)^{5}=(-1)(-1)(-1)(-1)(-1)(-1)=-1
$$

$$
\begin{aligned}
& \left(\frac{p}{q}\right)^{6}=\frac{p^{6}}{q^{6}} \quad \text {, ৷ }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{a}{b}\right)^{m}=\frac{a \times a \times a \times a \times \ldots \ldots \ldots \ldots \ldots \times a^{\prime} m^{\prime}}{b \times b \times b \times b \times \ldots \ldots \ldots \ldots \times b^{\prime} m^{\prime}} \because=\frac{a^{m}}{b^{m}}
\end{aligned}
$$

From the above illustrations we observe that:
(i) 1 raised to any power is 1 .
(ii) (-1) raised to odd power is (-1) and (-1) raised to even power is $(+1)$.

Thus $(-a)^{\mathrm{m}}=-\mathrm{a}^{\mathrm{m}}$ If ' m ' is odd

$$
(-a)^{\mathrm{m}}=\mathrm{a}^{\mathrm{m}} \text { If ' } \mathrm{m} \text { ' is even }
$$

Now, let us look at some more examples.
$(-3)^{4}=(-3) \quad(-3) \quad(-3) \quad(-3)=81$
$(-a)^{4}=(-a) \quad(-a) \quad(-a) \quad(-a)=\mathrm{a}^{4}$
$(-a)^{-3}=\frac{1}{(-a)} \times \frac{1}{(-a)} \times \frac{1}{(-a)}=\frac{1}{-a^{3}}=\frac{-1}{a^{3}}$

Example 19: Express $\frac{-27}{125}$ in exponential form
Solution: $\quad-27=(-3)(-3)(-3)=(-3)^{3}$

$$
125=5 \times 5 \times 5=(5)^{3}
$$

Therefore, $\frac{-27}{125}=\frac{(-3)^{3}}{(5)^{3}} \quad$ as $\frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m}$

$$
\text { Thus, } \frac{-27}{125}=\left(\frac{-3}{5}\right)^{3}
$$

Do This

1. Write in expanded form.
(i) $(a)^{-5}$
(ii) $(-a)^{4}$
(iii) $(-7)^{-5}$
(iv) $(-a)^{m}$
2. Write in exponential form

(i) $(-3) \times(-3) \times(-3)$
(ii) $(-b) \times(-b) \times(-b) \times(-b)$
(iii) $\frac{1}{(-2)} \times \frac{1}{(-2)} \times \frac{1}{(-2)} \ldots \ldots$. ' m ' times

$$
\begin{aligned}
& \frac{\mathcal{L}}{\sim} \cup \frac{-27}{125}=\frac{(-3)^{3}}{(5)^{3}} \frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m} \\
& \frac{-27}{125}=\left(\frac{-3}{5}\right)^{3}
\end{aligned}
$$

.

Exercise 2

1. Simplify the following using laws of exponents.
(i) $2^{10} \times 2^{4}$
(ii) $\left(3^{2}\right) \times\left(3^{2}\right)^{4}$
(iii) $\frac{5^{7}}{5^{2}}$
(iv) $9^{2} \times 9^{18} \times 9^{10}$
(v) $\left(\frac{3}{5}\right)^{4} \times\left(\frac{3}{5}\right)^{3} \times\left(\frac{3}{5}\right)^{8}$
(vi) $(-3)^{3} \times(-3)^{10} \times(-3)^{7}$
(vii) $\left(3^{2}\right)^{2}$
(viii) $2^{4} \times 3^{4}$
(ix) $2^{4 a} \times 2^{5 a}$
(x) $\left(10^{2}\right)^{3}$
(xi) $\left[\left(\frac{-5}{6}\right)^{2}\right]^{5}$
(xii) $2^{3 a+7} \times 2^{7 a+3}$
(xiii) $\left(\frac{2}{3}\right)^{5}$
(xiv) $(-3)^{3} \times(-5)^{3}$
(xv) $\frac{(-4)^{6}}{(-4)^{3}}$
(xvi) $\frac{9^{7}}{9^{15}}$
(xvii) $\frac{(-6)^{5}}{(-6)^{9}}$
(xviii) $(-7)^{7} \times(-7)^{8}$
(xix) $\left(-6^{4}\right)^{4}$
(xx) $\quad a^{x} \times a^{y} \times a^{z}$
2. By what number should 3^{-4} be multiplied so that the product is 729 ?
3. If $5^{6} \times 5^{2 x}=5^{10}$, then find x.
4. Evaluate $2^{0}+3^{0}$
5. \quad Simplify $\left(\frac{x^{a}}{x^{b}}\right)^{a} \times\left(\frac{x^{b}}{x^{a}}\right)^{a} \times\left(\frac{x^{a}}{x^{a}}\right)^{b}$
6. State true or false and justify your answer.
(i) $100 \times 10^{11}=10^{13}$
(ii) $3^{2} \times 4^{3}=12^{5}$
(iii)) $5^{0}=(100000)^{0}$
(iv) $4^{3}=8^{2}$
(v) $2^{3}>3^{2}$
(vi) $(-2)^{4}>(-3)^{4}$
(vii) $(-2)^{5}>(-3)^{5}$

Project Work

Collect the annual income particulars of any ten families in your locality and round it to the nearest thousands / lakhs and express the income of each family in the exponential form.

2-

$$
\begin{array}{rcr}
2^{4 \mathrm{a}} \times 2^{5 \mathrm{a}} \text { (ix) } & 2^{4} \times 3^{4} \text { (viii) } & \left(3^{2}\right)^{2}(\text { vii) } \\
2^{3 \mathrm{a}+7} \times 2^{7 \mathrm{a}+3}(\text { (xii }) & {\left[\left(\frac{-5}{6}\right)^{2}\right]^{5}(\text { (xi) }} & \left(10^{2}\right)^{3}(\mathrm{x}) \\
\frac{(-4)^{6}}{(-4)^{3}} & (\text { xv }) & (-3)^{3} \times(-5)^{3}
\end{array}
$$

$$
(-7)^{7} \times(-7)^{8} \quad \text { (xviii) } \quad \frac{(-6)^{5}}{(-6)^{9}}(x v i i) \quad \frac{9^{7}}{9^{15}} \quad \text { (xvi) }
$$

$$
a^{x} \times a^{y} \times a^{z} \quad(x x) \quad\left(-6^{4}\right)^{4} \quad \text { (xix) }
$$

$$
\left(\frac{x^{a}}{x^{b}}\right)^{a} \times\left(\frac{x^{b}}{x^{a}}\right)^{a} \times\left(\frac{x^{a}}{x^{a}}\right)^{b}-{ }^{\text {ºnsen}} .5
$$

$$
\begin{equation*}
5^{0}=(100000)^{0} \text { (iii) } \quad 3^{2} \times 4^{3}=12^{5} \text { (ii) } \quad 100 \times 10^{11}=10^{13} \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
(-2)^{5}>(-3)^{5}(\mathrm{vii})(-2)^{4}>(-3)^{4} \quad(\mathrm{vi}) \quad 2^{3}>3^{2} \quad(\mathrm{v}) 4^{3}=8^{2} \tag{iv}
\end{equation*}
$$

الپ ; ; يبتّ

$$
\begin{align*}
& \frac{5^{7}}{5^{2}} \text { (iii) } \quad\left(3^{2}\right) \times\left(3^{2}\right)^{4} \text { (ii) } \quad 2^{10} \times 2^{4} \tag{i}\\
& (-3)^{3} \times(-3)^{10} \times(-3)^{7}\left(\text { vi) }\left(\frac{3}{5}\right)^{4} \times\left(\frac{3}{5}\right)^{3} \times\left(\frac{3}{5}\right)^{8} \quad \text { (v) } 9^{2} \times 9^{18} \times 9^{10}\right. \text { (iv) }
\end{align*}
$$

11.3.6 Expressing large numbers in standard form

The mass of the Earth is about $5976 \times 10^{21} \mathrm{~kg}$.
The width of the Milky Way Galaxy from one edge to the other edge is about $946 \times 10^{5} \mathrm{~km}$.
These numbers are still not very easy to comprehend. Thus, they are often expressed in standard form. In standard form:

Mass of the Earth is about $5.976 \times 10^{24} \mathrm{~kg}$
Similarly, the standard form of 946×10^{15} is 9.46×101^{7}.
Thus, in standard form (Scientific notation) a number is expressed as the product of largest integer exponent of 10 and a decimal number between 1 and 10 .

Exercise 3

Express the number appearing in the following statements in standard form.
(i) The distance between the Earth and the Moon is approximately $384,000,000 \mathrm{~m}$.
(ii) The universe is estimated to be about $12,000,000,000$ years old.
(iii) The distance of the sun from the center of the Milky Way Galaxy is estimated to be $300,000,000,000,000,000,000 \mathrm{~m}$.
(iv) The earth has approximately $1,353,000,000$ cubic km of sea water.

Looking Back

- Very large numbers are easier to read, write and
 understand when expressed in exponential form.
- $10,000=10^{4}(10$ raised to the power of 4$) ; 243=3^{5}(3$ raised to the power of 5$)$; $64=2^{6}(2$ raised to the power of 6$)$. In these examples $10,3,2$ are the respective bases and 4,5,6 are the respective exponents.
- Laws of Exponents: For any non-zero integers ' a ' and ' b ' and integers ' m ' and ' n
(i) $a^{m} \times a^{n}=a^{m+n}$
(ii) $\left(a^{m}\right)^{n}=a^{m n}$
(iii) $a^{m} \times b^{m}=(a b)^{m}$
(iv) $a^{-n}=\frac{1}{a^{n}}$
(v) $\frac{a^{m}}{a^{n}}=a^{m-n}$ if $m>n$
(vi) $\frac{a^{m}}{b^{n}}=\frac{1}{a^{n-m}}$ if $m<n$
(vii) $\frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m}$
(viii) $\mathrm{a}^{0}=1($ where $\mathrm{a} \neq 0)$

11．3．6

 و，ورصا اル户

3－J

1．

（iii）
300,000,000,000,000,000,000,

－

$$
\begin{align*}
& a_{a}^{m} \times b^{m}=(a b) \quad \text { (iii) } \quad\left(a^{m}\right)^{n}=a^{m n} \text { (ii) } \quad a^{m} \times a^{n}=a^{m+n} \tag{i}\\
& \mathrm{~m}>\mathrm{n} \text { 序 } \frac{a^{m}}{a^{n}}=a^{m-n} \tag{v}\\
& a^{-n}=\frac{1}{a^{n}} \text { (iv) } \tag{iv}\\
& \text { (} \mathrm{a}=0 \cup \text { جب) }) \mathrm{a}^{0}=1 \text { (viii) } \frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m} \text { (vii) } \quad \mathrm{n}>\mathrm{m} \sqrt{\boldsymbol{r}} \frac{a^{m}}{b^{n}}=\frac{1}{a^{n-m}} \text { (vi) } \tag{vi}
\end{align*}
$$

In Class VI, we have been introduced to quadrilaterals. In this unit you will learn about the different types of quadrilaterals and their properties.

12.0 Quadrilateral

What is common property among all these pictures?
(Hints: Number of sides, angles, vertices. Is it an open or closed figure?)
Thus, a quadrilateral is a closed figure with four sides, four angles and four vertices.
Quadrilateral ABCD has
(i) Four sides, namely $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}$ and $\overline{\mathrm{DA}}$
(ii) Four vertices, namely A, B, C and D.
(iii) Four angles, namely $\angle \mathrm{ABC}, \angle \mathrm{BCD}, \angle \mathrm{CDA}$ and $\angle \mathrm{DAB}$.
(iv) The line segments joining the opposite vertices of a quadrilateral are called the diagonals of the quadrilateral. $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ are the diagonals of quadrilateral ABCD .

(v) The two sides of a quadrilateral which have a common vertex are called the 'adjacent sides' of the quadrilateral. In quadrilateral $\mathrm{ABCD}, \overline{\mathrm{AB}}$ is adjacent to $\overline{\mathrm{BC}}$ and B is their common vertex.
(vi) The two angles of a quadrilateral having a common side are called the pair of 'adjacent angles' of the quadrilateral. Thus, $\angle \mathrm{ABC}$ and $\angle \mathrm{BCD}$ are a pair of adjacent angles and $\overline{\mathrm{BC}}$ is one of the common side.

Do This

(i) In a quadrilateral ABCD , find the other adjacent sides and common vertices.
(ii) In a quadrilateral ABCD , find the other pairs of adjacent angles and sides.

12
 QUADRLATERAS

"
(v
ضلع
(vi
< متصلززاويونك جورُى

-- (ii)
(vii) The two sides of a quadrilateral, which do not have a common vertex, are called a pair of 'opposite sides' of the quadrilateral. Thus $\overline{\mathrm{AB}}, \overline{\mathrm{CD}}$ and $\overline{\mathrm{AD}}, \overline{\mathrm{BC}}$ are the two pairs of 'opposite sides' of the quadrilateral.
(viii) The two angles of a quadrilateral which do not have a common side are known as a pair of 'opposite angles' of the quadrilateral. Thus $\angle \mathrm{DAB}, \angle \mathrm{BCD}$ and $\angle \mathrm{CDA}, \angle \mathrm{ABC}$ are the two pairs of opposite angles of the quadrilateral.

Try This

How many different quadrilaterals can be obtained from the adjacent figure? Name them.

12.1 Interior-Exterior points of a quadrilateral

In quadrilateral ABCD which points lie inside the quadrilateral?
Which points lie outside the quadrilateral?
Which points lie on the quadrilateral?

Points P and M lie in the interior of the quadrilateral. Points L, O and Q lie in the exterior of the quadrilateral. Points N, A, B, C and D lie on the quadrilateral.

Mark as many points as you can in the interior of the quadrilateral.
Mark as many points as you can in the exterior of the quadrilateral.
How many points, do you think will be there in the interior of the quadrilateral?

12.2 Convex and Concave quadrilateral

Mark any two points L and M in the interior of quadrilateral ABCD and join them with a line segment.

Does the line segment or a part of it joining these points lie in the exterior of the quadrilateral? Can you find any two points in the interior of the quadrilateral ABCD for which the line segment joining them falls in the exterior of the quadrilateral?

You will see that this is not possible.
Now let us do similar work in quadrilateral PQRS.

Figure 1
(يرثّ (vii
‘ $\angle C D A$, $\angle B C D$ ‘ $\angle D A B$ اور
$\angle A B C$
(viii
 c

 كون

 12.2

Mark any two points U and V in the interior of quadrilateral $P Q R S$ and join them. Does the line segment joining these two points fall in the exterior of the quadrilateral? Can you make more line segments like these in quadrilateral PQRS.
Can you also make line segments, joining two points, which lie in the interior of the quadrilateral PQRS. You will find that this is possible too.

Quadrilateral $A B C D$ is said to be a convex quadrilateral if all line segments joining points in the interior of the quadrilateral also lie in interior of the quadrilateral.
Quadrilateral PQRS is said to be a concave quadrilateral if all line segment joining points in the interior of the quadrilateral do not necessarily lie in the interior of the quadrilateral.

12.3 Angle-sum property of a quadrilateral

Activity 1

Take a piece of cardboard. Draw a quadrilateral ABCD on it. Make a cut of it. Then cut quadrilateral into four pieces (Figure 1) and arrange them as shown in the Figure 2, so that all angles $\angle 1, \angle 2, \angle 3, \angle 4$ meet at a point.

Figure 2

هِرضنى
 ا* ا

 يَنْإِضْلى ABCD

Figure 1

Figure 2

Is the sum of the angles $\angle 1, \angle 2, \angle 3$ and $\angle 4$ equal to 360° ?

The sum of the four angles of a quadrilateral is 360°.

[Note: We can also denote the angles $\angle 1, \angle 2, \angle 3$, etc. by as their respective measures i.e. $\mathrm{m} \angle 1$, $\mathrm{m} \angle 2, \mathrm{~m} \angle 3$, etc.]

You may arrive at this result in several other ways also.

1. Let P be any point in the interior of quadrilateral ABCD . Join P to vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . In the figure, consider $\triangle \mathrm{PAD}$.

$$
\begin{equation*}
\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}-x \tag{1}
\end{equation*}
$$

Similarly, in $\triangle \mathrm{PDC}, \mathrm{m} \angle 4+\mathrm{m} \angle 5=180^{\circ}-\mathrm{y}$. (2)
in $\triangle \mathrm{PCB}, \mathrm{m} \angle 6+\mathrm{m} \angle 7=180^{\circ}-\mathrm{z}$ and \qquad
in \triangle PBA, $\mathrm{m} \angle 8+\mathrm{m} \angle 1=180^{\circ}-\mathrm{w}$.

(angle-sum property of a triangle)
Adding (1), (2), (3) and (4) we get
$\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3+\mathrm{m} \angle 4+\mathrm{m} \angle 5+\mathrm{m} \angle 6+\mathrm{m} \angle 7+\mathrm{m} \angle 8$

$$
\begin{aligned}
& =180^{\circ}-x+180^{\circ}-y+180^{\circ}-\mathrm{z}+180^{\circ}-\mathrm{w} \\
& =720^{\circ}-(x+y+\mathrm{z}+\mathrm{w}) \\
& \left(x+y+\mathrm{z}+\mathrm{w}=360^{\circ} ; \text { sum of angles at a point }\right) \\
& =720^{\circ}-360^{\circ} \quad=360^{\circ}
\end{aligned}
$$

Thus, the sum of the angles of the quadrilateral is 360°.
2. Take any quadrilateral, say ABCD . Divide it into two triangles, by drawing a diagonal. You get six angles 1, 2, 3, 4, 5 and 6.

Using the angle-sum property of a triangle and you can easily find how the sum of the measures of $\angle \mathrm{A}, \angle \mathrm{B}, \angle \mathrm{C}$ and $\angle \mathrm{D}$ amounts to 360°.

Try This

What would happen if the quadrilateral is not convex? Consider quadrilateral $A B C D$. Split it into two triangles and find the sum of the interior angles. What is the sum of interior angles of a concave quadrilateral?

1- ;

$$
\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3+\mathrm{m} \angle 4+\mathrm{m} \angle 5+\mathrm{m} \angle 6+\mathrm{m} \angle 7+\mathrm{m} \angle 8
$$

$$
=180^{\circ}-x+180^{\circ}-y+180^{\circ}-z+180^{\circ}-w
$$

$$
=720^{\circ}-(x+y+z+w)
$$

$$
=720^{\circ}-360^{\circ}=360^{\circ}
$$

" "

$$
\begin{align*}
& \mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}-x \tag{1}\\
& \text { ي } \triangle \text { PDCZ } \tag{2}\\
& \text { اور } \tag{3}\\
& \begin{array}{l}
. \\
. \\
.
\end{array} \text { PBA }, \mathrm{m} \angle 8+\mathrm{m} \angle 1=180^{\circ}-w \tag{4}
\end{align*}
$$

Example 1: The three angles of a quadrilateral are $55^{\circ}, 65^{\circ}$ and 105°. Find the fourth angle?
Solution : \quad The sum of the four angles of a quadrilateral $=360^{\circ}$.
The sum of the given three angles $\quad=55^{\circ}+65^{\circ}+105^{\circ}=225^{\circ}$
Therefore, the fourthangle $\quad=360^{\circ}-225^{\circ}=135^{\circ}$
Example 2: In a quadrilateral, two angles are 80° and 120°. The remaining two angles are equal. What is the measure of each of these angles?

Solution : \quad The sum of the four angles of the quadrilateral $=360^{\circ}$.
Sum of the given two angles $=80^{\circ}+120^{\circ}=200^{\circ}$
Therefore, the sum of the remaining two angles $=360^{\circ}-200^{\circ}=160^{\circ}$
Both these angles are equal.
Therefore, each angle $=160^{\circ} \div 2=80^{\circ}$
Example 3: The angles of a quadrilateral are $x^{\circ},(x-10)^{\circ},(x+30)^{\circ}$ and $2 x^{\circ}$. Find the angles.
Solution: \quad The sum of the four angles of a quadrilateral $=360^{\circ}$
Therefore, $x+(x-10)+(x+30)+2 x=360$

$$
5 x+20 \quad=360
$$

$$
\therefore \quad x=68^{\circ}
$$

Thus, the four angles are $=68^{\circ} ;(68-10)^{\circ} ;(68+30)^{\circ} ;(2 \times 68)^{\circ}$

$$
=68^{\circ}, 58^{\circ}, 98^{\circ} \text { and } 136^{\circ} .
$$

Example 4: The angles of a quadrilateral are in the ratio $3: 4: 5: 6$. Find the angles.
Solution : The sum of four angles of a quadrilateral $=360^{\circ}$
The ratio of the angles is $3: 4: 5: 6$
Thus, the angles are $3 x, 4 x, 5 x$ and $6 x$.

$$
\begin{aligned}
3 x+4 x+5 x+6 x & =360^{\circ} \\
18 x & =360^{\circ} \\
x & =\frac{360}{18}=20^{\circ}
\end{aligned}
$$

Thus, the angles are $=3 \times 20^{\circ} ; 4 \times 20^{\circ} ; 5 \times 20^{\circ} ; 6 \times 20^{\circ}$

$$
=60^{\circ}, 80^{\circ}, 100^{\circ} \text { and } 120^{\circ}
$$

$$
360^{\circ}
$$

$$
\begin{aligned}
\wedge x^{\circ}+\left(x-10^{\circ}\right)+\left(x+30^{\circ}\right)+2 x^{\circ} & =360^{\circ} \\
5 x+20 & =360^{\circ} \\
x & =68^{\circ}
\end{aligned}
$$

لبّنا (

$$
=68^{\circ}, 58^{\circ}, 98^{\circ}, 136^{\circ}
$$

3:4:5:6 = زاويوט بيننبت
لبزا: زاوـي 3x، 5x،4x، اورك6x بّل-

$$
3 x+4 x+5 x+6 x=360
$$

$$
18 x=360
$$

$$
x=\frac{360}{18}=20
$$

$$
=60^{\circ} ; \quad 80^{\circ} ; 100^{\circ} ; 120^{\circ}
$$

$$
\begin{aligned}
& =360^{\circ}-200^{\circ}=160^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 临 } \frac{160^{\circ}}{2}=80^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \text { و }=55^{\circ}+65^{\circ}+105^{\circ}=225^{\circ} \\
& \text { = } 360^{\circ}-225^{\circ}=135^{\circ}
\end{aligned}
$$

Exercise - 1

1. In quadrilateral PQRS
(i) Name the sides, angles, vertices and diagonals.
(ii) Also name all the pairs of adjacent sides, adjacent angles,
 opposite sides and opposite angles.
2. The three angles of a quadrilateral are $60^{\circ}, 80^{\circ}$ and 120°. Find the fourth angle?

3. The angles of a quadrilateral are in the ratio $2: 3: 4: 6$. Find the measure of each of the four angles.
4. The four angles of a quadrilateral are equal. Find each of them. Draw this quadrilateral in your notebook.
5. In a quadrilateral, the angles are $x^{\circ},(x+10)^{\circ},(x+20)^{\circ},(x+30)^{\circ}$. Find the angles.
6. The angles of a quadrilateral cannot be in the ratio $1: 2: 3: 6$. Why? Give reasons. (Hint: Try to draw a rough diagram of this quadrilateral)

12.4 Types of quadrilaterals

Based on the nature of the sides and angles, quadrilaterals have different names.

12.4.1 Traperium

Trapezium is a quadrilateral with one pair of parallel sides.

These are trapeziums

These are not trapeziums
(Note: The arrow marks indicate parallel lines).
Why the second set of figures are not trapeziums?

1- j

1- جارضلى PQRS
i
(ii

 بيا تْ معلوم بيدي؟
5- ايكسپإِلى كزاوـي

12.4

(Trapezium) مثخف 12.4.1

$$
\begin{aligned}
& \text { " }
\end{aligned}
$$

12.4.2 Kite

A Kite is a special type of quadrilateral. The sides with the same markings in each figure are equal in length. For example $A B=A D$ and $B C=C D$.

These are kites

These are not kites
Why the second set of figures are not kites?
Observe that:
(i) A kite has $\mathbf{4}$ sides (It is a convex quadrilateral).
(ii) There are exactly two distinct, consecutive pairs of sides of equal length.

Activity 2

Take a thick sheet of paper. Fold the paper at the centre. Draw two line segments of different lengths as shown in Figure 1. Cut along the line segments and open up the piece of paper as shown in Figure 2.

You have the shape of a kite.

Figurel

Figure2

Does the kite have line symmetry?
Fold both the diagonals of the kite. Use the set-square to check if they cut at right angles.
Are the diagonals of the kite equal in length? Verify (by paper-folding or measurement) if the diagonals bisect each other.

(Kite) (12.4.2.
 ،

بيّما

ثشابره بيكي:-
(i (ii

(1) $\underbrace{\xi}$

 اس آ

كوشث كِيمي

12.4.3 Parallelogram

Activity 3

Take two identical cut-outs of a triangle of sides $3 \mathrm{~cm}, 4 \mathrm{~cm}, 5 \mathrm{~cm}$. Arrange them as shown in the figure given below:

You get a parallelogram. Which are the parallel sides here? Are the parallel sides equal? You can get two more parallelograms using the same set of triangles. Find them out.

A parallelogram is a quadrilateral with two pairs of opposite sides parallel.

Activity 4

Take a ruler. Place it on a paper and draw two lines along its two sides as shown in Figure1. Then place the ruler over the lines as shown in Figure2 and draw two more lines along its edges again.

In Figure 3, opposite sides are parallel, hence it is a parallelogram.

12.4.3(a) Properties of a parallelogram

Sides of parallelogram

Activity 5

Take cut-outs of two identical parallelograms, say ABCD and $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$.

12.4.3 متوازىالاضلاع (Parallelogram)

رثغلم3:-
3 3 3
-طانقاسترتيب, بيكي-

 مثغل4:

11^{6}
26^{6}

متوازىالاضلاعحضضع
12.4.3(a) متوازىالاضلاع عضلعىخصوصيات

Here $\overline{\mathrm{AB}}$ is same as $\overline{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}$ except for the name. Similarly, the other corresponding sides are equal too. Place $\overline{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}$ over $\overline{\mathrm{DC}}$. Do they coincide? Are the lengths $\overline{\mathrm{A}^{\prime} \mathrm{B}^{\prime}}$ and $\overline{\mathrm{DC}}$ equal?

Similarly examine the lengths $\overline{\mathrm{AD}}$ and $\overline{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}$. What do you find?
You will find that the sides are equal in both cases. Thus, the opposite sides of a parallelogram are of equal length.

You will also find the same results by measuring the side of the parallelogram with a scale.

Try This

Take two identical set squares with angles $30^{\circ}-$ $60^{\circ}-90^{\circ}$ and place them adjacently as shown in the adjacent figure. Does this help you to verify the above property? (Can we say every rectangle is a parallelogram?)

Example 5: Find the perimeter of the parallelogram PQRS.
Solution : In a parallelogram, the opposite sides have same length.
According to the question, $\mathrm{PQ}=\mathrm{SR}=12 \mathrm{~cm}$ and $\mathrm{QR}=\mathrm{PS}=7 \mathrm{~cm}$

$$
\text { Thus, Perimeter }=\mathrm{PQ}+\mathrm{QR}+\mathrm{RS}+\mathrm{SP}
$$

$$
=12 \mathrm{~cm}+7 \mathrm{~cm}+12 \mathrm{~cm}+7 \mathrm{~cm}=38 \mathrm{~cm}
$$

Angles of a parallelogram

Activity 6

Let ABCD be a parallelogram. Copy it on a tracing sheet. Name this copy as $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}$. Place $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \mathrm{D}^{\prime}$ on ABCD as shown in Figure 1. Pin them together at the point where the diagonals meet. Rotate the transparent sheet by 90° as shown in Figure 2. Then rotate the parallelogram again by 90° in the same direction. You will find that the parallelograms coincide as shown in Figure 3. You now find A^{\prime} lying exactly on C and C^{\prime} lying on A. Similarly B^{\prime} lies on D and D^{\prime} lies on B as shown in Figure 3.

Figure 1

Figure 3
" يرونو
 روزو

ترّ ص
 ال الما

متوازىالاضلاع عزاوـيـ
مثغل,6:-
6 A'B'C'D' اكيستواز 6

 90° ي!

33^{6}

Does this tell you anything about the measures of the angles A and C? Examine the same for angles B and D. State your findings.

You will conclude that the opposite angles of a parallelogram are of equal measure.

Try This

Take two identical $30^{\circ}-60^{\circ}-90^{\circ}$ set squares and form a parallelogram as before. Does the figure obtained help you confirm the above property?

You can justify this idea through logical arguments-
If $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ are the diagonals of the parallelogram ABCD you find that $\angle 1=\angle 2$ and $\angle 3=\angle 4$ (alternate angles property) $\Delta \mathrm{ABC} \cong \triangle \mathrm{CDA}$ (ASA congruency).

Therefore, $\mathrm{m} \angle \mathrm{B}=\mathrm{m} \angle \mathrm{D}$ (c.p.c.t.).
Similarly, $\triangle \mathrm{ABD} \cong \triangle \mathrm{CDB}$, therefore, $\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{C}$. (c.p.c.t.).
Thus, the opposite angles of a parallelogram are of equal measure.

We now turn our attention to adjacent angles of a parallelogram.

In parallelogram $\mathrm{ABCD}, \overline{\mathrm{DC}} \| \overline{\mathrm{AB}}$ and $\overline{\mathrm{DA}}$ is the transversal.
Therefore, $\angle \mathrm{A}$ and $\angle \mathrm{D}$ are the interior angles on the same side of the transversal. They are supplementary each other.
$\angle \mathrm{A}$ and $\angle \mathrm{B}$ are also supplementary. Can you say 'why'?
$\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$ and $\overline{\mathrm{BA}}$ is a transversal, making $\angle \mathrm{A}$ and $\angle \mathrm{B}$ interior
 angles.

Do This

Identify two more pairs of supplementary angles from the parallelogram ABCD given above.

Example 6: BEST is a parallelogram. Find the values x, y and z .
Solution : $\quad \angle \mathrm{S}$ is opposite to $\angle \mathrm{B}$.
So, $x=100^{\circ}$ (opposite angles property)
$y=100^{\circ}$ (corresponding angles)
$z=80^{\circ}$ (since $\angle y, \angle z$ is a linear pair)

The adjacent angles in a parallelogram are supplementary. You have observed the same result in the previous example.

كوڤث كِيم:

'تّ

اگر
بحك

$\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{C}[$ (c.p.c.t) $]$

< اور \angle
 .
نكورهإلانتوازكالاضلا ABCD

$$
y=100^{\circ} \quad \text { (تنا }
$$

$$
z=80^{\circ} \quad(\text { پوزكّ } \mathrm{z})
$$

Example 7: In parallelogram RING if $\mathrm{m} \angle \mathrm{R}=70^{\circ}$, find all the other angles.
Solution : According to the question, $\mathrm{m} \angle \mathrm{R}=70^{\circ}$
Then $\mathrm{m} \angle \mathrm{N}=70^{\circ}$ (opposite angles of a parallelogram)
Since $\angle \mathrm{R}$ and $\angle \mathrm{I}$ are supplementary angles,

$\mathrm{m} \angle \mathrm{I}=180^{\circ}-70^{\circ}=110^{\circ}$
Also, $\mathrm{m} \angle \mathrm{G}=110^{\circ}$ since $\angle \mathrm{G}$ and $\angle \mathrm{I}$ are opposite angles of a parallelogram.
Thus, $\mathrm{m} \angle \mathrm{R}=\mathrm{m} \angle \mathrm{N}=70^{\circ}$ and $\mathrm{m} \angle \mathrm{I}=\mathrm{m} \angle \mathrm{G}=110^{\circ}$

Try this

For the above example, can you find $\mathrm{m} \angle \mathrm{I}$ and $\mathrm{m} \angle \mathrm{G}$ by any other method?
Hint : Angle-sum property of a quadrilateral.

12.4.3 (b) Diagonals of parallelogarm

Activity 7

Take a cut-out of a parallelogram, say, ABCD . Let its diagonals $\overline{\mathrm{AC}}$ and $\overline{\mathrm{DB}}$ meet at O .

Find the mid-point of $\overline{\mathrm{AC}}$ by folding and placing C on A . Is the mid-point same as O ?
Find the mid-point of $\overline{\mathrm{DB}}$ by folding and placing D on B . Is the mid-point same as O ?

Does this show that diagonal $\overline{\mathrm{DB}}$ bisects the diagonal $\overline{\mathrm{AC}}$ at the point O ? Discuss it with your friends. Repeat the activity to find where the mid point of $\overline{\mathrm{DB}}$ could lie.

The diagonals of a parallelogram bisect each other.
It is not very difficult to justify this property using ASA congurency:

$\Delta \mathrm{AOB} \cong \Delta \mathrm{COD}$
(How is ASA used here?)
This gives $\overline{\mathrm{AO}}=\overline{\mathrm{CO}}$ and $\overline{\mathrm{BO}}=\overline{\mathrm{DO}}$

-

 اس ا

 (

$$
\triangle \mathrm{AOB} \cong \mathrm{COD}
$$

BO = DO اور AO = CO الينا

Example 8: HELP is a parallelogram. Given that $\overline{\mathrm{OE}}=4 \mathrm{~cm}$, where O is the point of intersection of the diagonals and $\overline{\mathrm{HL}}$ is 5 cm more than $\overline{\mathrm{PE}}$? Find $\overline{\mathrm{OH}}$.

Solution: If $\overline{\mathrm{OE}}=4 \mathrm{~cm}$ then $\overline{\mathrm{OP}}$ also is 4 cm (Why?)
So $\overline{\mathrm{PE}}=8 \mathrm{~cm} \quad$ (Why?)
HL is 5 cm more than $\overline{\mathrm{PE}}$

Therefore, $\quad \overline{\mathrm{HL}}=8+5=13 \mathrm{~cm}$

Thus,

$$
\overline{\mathrm{OH}}=\frac{1}{2} \times 13=6.5 \mathrm{cms}
$$

12.4.4 Rhombus

Recall the paper-cut kite you made earlier. When you cut along ABC and opened up, you got a kite. Here lengths AB and BC were different. If you draw $\mathrm{AB}=\mathrm{BC}$, then the kite you obtain is called a rhombus.

Note that all the sides of rhombus are of same length; this is not the case with the kite.

Since the opposite sides of a rhombus are parallel, it is also a parallelogram.

So, a rhombus has all the properties of a parallelogram and also that of a kite. Try to list them out. You can then verify your list with the check list at the end of the chapter.

Kite

Rhombus

The diagonals of a rhombus are perpendicular bisectors of one another

Activity 8

Take a copy of a rhombus. By paper-folding verify if the point of intersection is the mid-point of each diagonal. You may also check if they intersect at right angles, using the corner of a set-square.

Now let us justify this property using logical steps.
ABCD is a rhombus. It is a parallelogram too, so diagonals bisect each other.
Therefore, $\overline{\mathrm{OA}}=\overline{\mathrm{OC}}$ and $\overline{\mathrm{OB}}=\overline{\mathrm{OD}}$.

رش ل8：－HELP اكيستوازیالاضلاع

ט ل：اگر4

（ $\mathrm{PE}=$（ كيوّ؟）

$\mathrm{HL}=8+5=$ N
てよしا $\mathrm{OH}=\frac{1}{2} \times 13=$ f 6.5

（Rhombus）12．4．4 ᄃ

$$
\overline{O B}=\overline{O D} \quad \mid \overrightarrow{O A}=\overline{O C}
$$

We now have to show that $\mathrm{m} \angle \mathrm{AOD}=\mathrm{m} \angle \mathrm{COD}=90^{\circ}$.
It can be seen that by SSS congruency criterion.
$\triangle \mathrm{AOD} \cong \triangle \mathrm{COD}$
Therefore, $\quad \mathrm{m} \angle \mathrm{AOD}=\mathrm{m} \angle \mathrm{COD}$
Since $\angle \mathrm{AOD}$ and $\angle \mathrm{COD}$ are a linear pair,

$$
\mathrm{m} \angle \mathrm{AOD}=\mathrm{m} \angle \mathrm{COD}=90^{\circ}
$$

We conclude, the diagonals of a rhombus are perpendicular bisectors of each other.

12.4.5 Rectangle

A rectangle is a parallelogram with equal angles.
What is the full meaning of this definition? Discuss with your friends.
If the rectangle is to be equiangular, what could be the measure of each angle?
Let the measure of each angle be x°.
Then

$$
4 x^{\circ}=360^{\circ} \quad(\text { Why }) ?
$$

Therefore,

$$
x^{\circ}=90^{\circ}
$$

Thus, each angle of a rectangle is a right angle.

So, a rectangle is a parallelogram in which every angle is a right angle.
Being a parallelogram, the rectangle has opposite sides of equal length and its diagonals bisect each other.

In a parallelogram, the diagonals can be of different lengths. (Check this); but surprisingly the rectangle (being a special case) has diagonals of equal length.

This is easy to justify:
If $A B C D$ is a rectangle,

| $\Delta \mathrm{ABC} \cong \triangle \mathrm{BAD}$ | |
| ---: | :--- | ---: |
| This is because $\overline{\mathrm{AB}}=\overline{\mathrm{AB}}$ | (Common side) |
| $\overline{\mathrm{BC}}=\overline{\mathrm{AD}}$ | (Why?) |
| $\mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}=90^{\circ}$ | (Why?) |

Thus, by SAS criterion $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$ and $\overline{\mathrm{AC}}=\overline{\mathrm{BD}}$ (c.p.c.t.)
Thus, in a rectangle the diagonals are of equal length.

$$
\text { ابابمكثابتـكنانيمي } \mathrm{m} \angle \mathrm{AOD}=\mathrm{m} \angle \mathrm{COD}=90^{\circ}
$$

$$
\mathrm{m} \angle \mathrm{AOD}=\mathrm{m} \angle \mathrm{COD} \text { النزا }
$$

$$
\text { چونك } \angle \mathrm{COD} \text { اور } \mathrm{CAOD} \text { خطىجورُ بّب- }
$$

$$
\mathrm{m} \angle \mathrm{AOD}=\mathrm{m} \angle \mathrm{COD}=90^{\circ}
$$

(Rectangle) (12.4 .5

 ك
 كـوزول عطولمساوى بيثّابت كرنآآنان

$\triangle \mathrm{ABC} \cong \triangle \mathrm{ABD}$

(

Example 9: RENT is a rectangle. Its diagonals intersect at O. Find x, if $\overline{\mathrm{OR}}=2 x+4$ and $\overline{\mathrm{OT}}=3 x+1$.

Solution: $\quad \overline{\mathrm{OT}}$ is half of the diagonal $\overline{\mathrm{TE}}$ and $\overline{\mathrm{OR}}$ is half of the diagonal RN.

Diagonals are equal here. (Why?)
So, their halves are also equal.

Therefore $\quad 3 x+1=2 x+4$
or $\quad x=3$

12.4.6 Square

A square is a rectangle with equal adjacent sides.
This means a square has all the properties of a rectangle with an additional property that all the sides have equal length.

The square, like the rectangle, has diagonals of equal length.
In a rectangle, there is no requirement for the diagonals to be perpendicular to one another (Check this). However, this is not true for a square.

Let us justify this-

BELT is a square, therefore, $\mathrm{BE}=\mathrm{EL}=\mathrm{LT}=\mathrm{TB}$
Now, let us consider $\triangle B O E$ and $\triangle \mathrm{LOE}$
$\mathrm{OB}=\mathrm{OL}$ (why?)
OE is common

Thus, by SSS congruency $\triangle \mathrm{BOE} \cong \Delta \mathrm{LOE}$
So $\quad \angle \mathrm{BOE}=\angle \mathrm{LOE}$
but $\angle \mathrm{BOE}+\angle \mathrm{LOE}=180^{\circ}($ why? $)$
(2) $\angle \mathrm{BOE}=\angle \mathrm{LOE}=\frac{180}{2}=90^{\circ}$

Thus, the diagonals of a square are perpendicular bisectors of each other.

In a square the diagonals.

(i) bisect one another (square being a rectangle)
(ii) are of equal length (square being a rectangle) and
(iii) are perpendicular to one another.

OT $=3 x+1$ اور
قل: - OT

$$
\begin{aligned}
& 3 x+1=2 x+4 \quad \text { ل } \\
& \quad x=3
\end{aligned}
$$

رنا ايكاييانتطيل ب<

$$
\text { (كيون) } \overline{O B}=\overline{O L}
$$

$\angle \mathrm{BOE}=\angle \mathrm{LOE}$ اس الِ
$\angle \mathrm{BOE}=\angle \mathrm{LOE}=\frac{180^{\circ}}{2}=90^{\circ}$ (كيو) $\angle \mathrm{SOE}+\angle \mathrm{LOE}=180^{\circ}$ لكيكن

منّ يّوت

(iii

$$
\begin{aligned}
& \mathrm{BE}=\mathrm{EL}=\mathrm{LT}=\mathrm{TB} \text { اكيـرنّ } \mathrm{C} \text { BELT }
\end{aligned}
$$

12.5 Making figures with a tangram.

Use all the pieces of tangarm to form a trapezium, a parallelogram, a rectangle and a square.

Also make as many different kinds of figures as you can by using all the pieces. Two examples have been given for you.

Example 10: In trapezium $A B C D, A B$ is parallel to $C D$. If $\angle \mathrm{A}=50^{\circ}, \angle \mathrm{B}=70^{\circ}$. Find $\angle \mathrm{C}$ and $\angle \mathrm{D}$.

Solution : Since AB is parallel to CD

$\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$ (interior angles on the same side of the transversal)
So $\angle \mathrm{D}=180^{\circ}-50^{\circ}=130^{\circ}$
Similarly, $\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$

$$
\text { So } \angle \mathrm{C}=180^{\circ}-70^{\circ}=110^{\circ}
$$

Tangram

اقى

£ $\overline{\mathrm{CD}}$ اور $\angle \mathrm{KC}$

صل: צֶزك~

$$
\begin{aligned}
& \angle D=180^{\circ}-50^{\circ}=130^{\circ} \quad \text { ان } \\
& \angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \text { 乙 }
\end{aligned}
$$

Example 11: The measures of two adjacent angles of a parallelogram are in the ratio 3:2. Find the angles of the parallelogram.

Solution : The adjacent angles of a parallelogram are supplementary.
i.e. their sum $=180^{\circ}$

Ratio of adjacent angles $=3: 2$
So, each of the angles is $180 \times \frac{3}{5}=108^{\circ}$ and
$180 \times \frac{2}{5}=72^{\circ}$
Example 12 : RICE is a rhombus. Diagonals intersect at 'O'. Find OE and OR. Justify your findings.

Solution : Diagonals of a rhombus bisect each other

i.e., $\mathrm{OE}=\mathrm{OI}$ and $\mathrm{OR}=\mathrm{OC}$

Therefore, $\mathrm{OE}=5$ and $\mathrm{OR}=12$

Exercise - 2

1. State whether true or false-
(i) All rectangles are squares
(ii) All rhombuses are parallelogram
(iii) All squares are rhombuses and also rectangles
(iv) All squares are not parallelograms
(v) All kites are rhombuses
(vi) Allrhombuses are kites
(vii) All parallelograms are trapeziums
(viii) All squares are trapeziums
2. Explain how a square is a-
(i) quadrilateral
(ii) parallelogram
(iii) rhombus
(iv) rectangle.
3. In a rhombus $\mathrm{ABCD}, \angle \mathrm{ABC}=40^{\circ}$.

Find the other angles.

 اس لِّبرايكزاوبي ابكـزاوي $180 \times \frac{3}{5}=108^{0}$ اور
 و"رازاوريح $180 \times \frac{2}{5}=72^{\circ}$

 OR=OC اور OE=OI OE OV

2- シ

(i

(iii

(v
(Vi

(viii

(iv (iii
3- ايكّيْن ABCD
4. The adjacent angles of a parallelogram are x° and $(2 x+30)^{\circ}$. Find all the angles of the parallelogram.
5. Explain how DEAR is a trapezium. Which of its two sides are parallel?

6. BASE is a rectangle. Its diagonals intersect at O . Find x, if $\mathrm{OB}=5 x+1$ and $\mathrm{OE}=2 x+4$.

7. Is quadrilateral ABCD a parallelogram, if $\angle \mathrm{A}=70^{\circ}$ and $\angle \mathrm{C}=65^{\circ}$? Give reason.
8. Two adjacent sides of a parallelogram are in the ratio 5:3 the perimeter of the parallelogram is 48 cm . Find the length of each of its sides.
9. The diagonals of the quadrilateral are perpendicular to each other. Is such a quadrilateral always a rhombus? Draw a rough figure to justify your answer.
10. ABCD is a trapezium in which $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}$. If $\angle \mathrm{A}=\angle \mathrm{B}=30^{\circ}$, what are the measures of the other two angles?
11. Fill in the blanks.
(i) A parallelogram in which two adjacent sides are equal is a \qquad .
(ii) A parallelogram in which one angle is 90° and two adjacent sides are equal is a
\qquad .
(iii) In trapezium $\mathrm{ABCD}, \overline{\mathrm{AB}} \| \overline{\mathrm{DC}}$. If $\angle \mathrm{D}=x^{\circ}$ then $\angle \mathrm{A}=$ \qquad .
(iv) Every diagonal in a parallelogram divides it in to \qquad triangles.
(v) In parallelogram ABCD , its diagonals $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ intersect at O . If $\mathrm{AO}=5 \mathrm{~cm}$ then $\mathrm{AC}=$ \qquad cm .
(vi) In a rhombus ABCD , its diagonals intersect at ' O '. Then $\angle \mathrm{AOB}=$ \qquad degrees.
(vii) ABCD is a parallelogram then $\angle \mathrm{A}-\angle \mathrm{C}=$ \qquad degrees.
(viii) In a rectangle ABCD , the diagonal $\mathrm{AC}=10 \mathrm{~cm}$ then the diagonal $\mathrm{BD}=$ \qquad cm.
(ix) In a square ABCD , the diagonal $\overline{\mathrm{AC}}$ is drawn. Then $\angle \mathrm{BAC}=$ \qquad degrees.

 ثتوازك بی؟

OE =2x+4 اور OB=5x+1 ملوم بيحي x

ك ک
10- اكيكخْف ABCD 11

 .

今…… ب.ر..................
 (ايمَتُطلABCD (viii

Looking back

1. A simple closed figure bounded by four line segments is called a quadrilateral.
2. Every quadrilateral divides a plane into three parts interior, exterior andthe quadrilateral.
3. Every quadrilateral has a pair of diagonals.
4. If the diagonals lie in the interior of the quadrilateralit is called convex quadrilateral.
5. If any one of the diagonals is not in the interior of the quadrilateral it is called a concave Quadrilateral.

6. The sum of interior angles of a quadrilateral is equal to 360°.
7. Properties of Quadrilateral

Quadrilateral	Properties
Parallelogram : A quadrilateral with both pair, of opposite sides parallel	(1) Opposite sides are equal. (2) Opposite angles are equal. (3) Diagonals bisect one another.
Rhombus : Aparallelogram with all sides of equal length.	(1) All the properties of parallelogram. (2) Diagonals are perpendicular to each other.
Rectangle : A parallelogram with all right angles.	(1) All the properties of a parallelogram. (2) Each of the angles is a right angle. (3) Diagonals are equal.
Square : Arectangle with sides ofequal length.	(1) All the properties of parallelogram, rhombus and a rectangle
Kite : Aquadrilateral with exactly two pairs of equal consecutive sides.	(1) The diagonals are perpendicular to one another.
(2) The diagonals are not of equal length.	
Trapezium: A quadrilateral with one pair of parallel sides.	(3) One of the diagonals bisects the other.

"

7

13.0 Introduction

Ira wants to find the area of her agricultural land, which is irregular in shape (Figure 1). So she divided her land into some regular shapes- triangles, rectangle, parallelogram, rhombus and square (Figure 2). She thought, 'ifI know the area of all these parts, I will know the area of my land.'

Figure 1

Figure 2

We have learnt how to find the perimeter and area of a rectangle and square in earlier classes. In this chapter we will learn how to find the area of a parallelogram, triangle, rhombus. First let us review what we have learnt about the area and perimeter of a square and rectangle in earlier classes.

1. Complete the table given below.

- Diagram	Shape	Area	Perimeter
	Rectangle Square	$1 \times b=\mathrm{lb}$	4a

13

رتجّاوراحاط,
 AREA AND PERIMETER

13.0

56	${ }^{6}$	رتب	bl
	- متطيل رُع	$1 \times \mathrm{b}=\mathrm{lb}$	4a

2. The measurements of some squares are given in the table below. However, they are incomplete. Find the missing information.

Side of a square	Area	Perimeter
15 cm	$225 \mathrm{~cm}^{2}$	
		88 cm

3. The measurements of some rectangles are given in the table below. However, they are incomplete. Find the missing information.

Length	Breadth	Area	Perimeter
20 cm	14 cm		
	12 cm		60 cm
15 cm		$150 \mathrm{~cm}^{2}$	

13.1 Area of a parallelogram

Look at the shape in Figure 1. It is a parallelogram. Now let us learn how to find its area-

Activity 1

Figure 1

- Draw a parallelogram on a sheet of paper (Figure 2).
- Cut out the parallelogram.
- Now cut the parallelogram along the dotted line as shown in Figure 2 and separate the triangular shaped piece of paper.

Figure 2

Figure 3

Can we say that the area of the parallelogram in Figure 2 equal to the area of the rectangle in Figure 3? You will find this to be true.
2.

تثوازىالانلا عكارجب

ثشغل1:-

㓌

— 6: كَ كَ

As you can see from the above activity the area of the parallelogram is equal to the area of the rectangle.

We know that the area of the rectangle is equal to length \times breadth. We also know that the length of the rectangle is equal to the base of the parallelogram and the breadth of the rectangle is equal to its height.

Therefore, Area of parallelogram = Area of rectangle

$$
\begin{aligned}
& =\text { length } \times \text { breadth } \\
& =\text { base } \times \text { height } \quad(\text { length }=\text { base } ; \text { breadth }=\text { height })
\end{aligned}
$$

Thus, the area of the parallelogram is equal to the product of its base (b) and corresponding height (h) i.e., $A=b h$

Example 1: Find the area of each parallelogram given in Figure 1 and Figure 2.
(i)

Figure 1

Solution :

Base (b) of a parallelogram $=4$ units
Height (h) of a parallelogram $=3$ units
Area (A) of a parallelogram $=b h$
Therefore, $A=4 \times 3=12$ sq. units
Thus, area of the parallelogram is 12 sq. units.

Solution :

Base of a parallelogram $(b)=6 \mathrm{~m}$.
Height of a parallelogram $(\mathrm{h})=13 \mathrm{~m}$.
Area of a parallelogram $(A)=b h$
Therefore, $\mathrm{A}=6 \times 13=78 \mathrm{~m}^{2}$
Thus, area of parallelogram ABCD is $78 \mathrm{~m}^{2}$

$$
\begin{aligned}
& \text { = }
\end{aligned}
$$

 12 = $4 \times 3=\mathrm{A}$

Figure 1
(ii)

Figure 2

Try This

ABCD is a parallelogram with sides 8 cm and 6 cm . In Figure 1, what is the base of the parallelogram? What is the height? What is the area of the parallelogram?
In Figure 2, what is the base of the parallelogram? What is the height? What is the area of the parallelogram? Is the area of Figure 1 and Figure 2 the same?

Figure 1

Figure 2

Any side of a parallelogram can be chosen as base of the parallelogram. In Figure 1 $D E$ is the perpendicular falling on $A B$. Hence $A B$ is the base and DE is the height of the parallelogram. In Figure $2, \mathrm{BF}$ is the perpendicular falling on side AD . Hence, $A D$ is the base and $B F$ is the height.

Do This

1. In parallelogram $\mathrm{ABCD}, \mathrm{AB}=10 \mathrm{~cm}$ and $\mathrm{DE}=4 \mathrm{~cm}$.
Find (i) The area of $A B C D$.
(ii) The length of BF , if $\mathrm{AD}=6 \mathrm{~cm}$

2. Carefully observe the following parallelograms.

 2 .

(i) Find the area of each parallelogram by counting the squares enclosed in it. For counting incomplete squares check whether two incomplete squares make a complete square in each parallelogram.

Complete the following table accordingly.

Parallelogram	Base	Height	Area	Area by counting squares		
				No. of full squares	No. of incomplete squares	Total squares (full)
(i)	5 units	3 units		12	6	15
(ii)						
(iii)						
(iv)						
(v)						
(vi)						
(vii)						

(ii) Do parallelograms with equal bases and equal heights have the same area?

Try This

(i) Why is the formula for finding the area of a rectangle related to the formula for finding the area of a parallelogram?
(ii) Explain why a rectangle is a parallelogram but a parallelogram may not be a rectangle.

Exercise - 2

1. Find the area of each of the following parallelograms.

(i)

(ii)
(iii)

(iv)

（ii）

（i）
جورُ تِبّ؟

¢
2－ジ

（i）

（ii）

2. PQRS is a parallelogram. PM is the height from P to $S R$ and $P N$ is the height from P to QR . If $\mathrm{SR}=12 \mathrm{~cm}$ and $\mathrm{PM}=7.6 \mathrm{~cm}$.
(i) Find the area of the parallelogramPQRS
(ii) Find PN , if $\mathrm{QR}=8 \mathrm{~cm}$.

3. $D F$ and $B E$ are the height on sides $A B$ and $A D$ respectively in parallelogram $A B C D$. If the area of the parallelogram is $1470 \mathrm{~cm}^{2}, \mathrm{AB}=35 \mathrm{~cm}$ and $\mathrm{AD}=49 \mathrm{~cm}$, find the length of BE and DF.

4. The height of a parallelogram is one third of its base. If the area of the parallelogram is $192 \mathrm{~cm}^{2}$, find its base and height.
5. In a parallelogram the base and height are in the ratio of $5: 2$. If the area of the parallelogram is $360 \mathrm{~m}^{2}$, find its base and height.
6. A square and a parallelogram have the same area. If a side of the square is 40 m and the height of the parallelogram is 20 m , find the base of the parallelogram.

13.2 Area of triangle

13.2.1 Triangles are parts of rectangles

Draw a rectangle on a paper. Cut the rectangle along its diagonal to get two triangles.

Superimpose one triangle over the other. Are they exactly the same in area? Can we say that the triangles are congruent?

 قاعمـاوربن

بَّ
13.2 ثيلثكراربّ:

13.2.1

علاص0 بَ

You will find that both the triangles are congruent. Thus, the area of the rectangle is equal to the sum of the area of the two triangles.

Therefore, the area of each triangle $=\frac{1}{2} \times($ area of rectangle $)$

$$
=\frac{1}{2} \times(l \times b)=\frac{1}{2} l b
$$

13.2.2 Triangles are parts of parallelograms

Make a parallelogram as shown in the Figure. Cut the parallelogram along its diagonal. You will get two triangles. Superimpose one triangle over the other. Are they exactly the same size (area)?

You will find that the area of the parallelogram is equal to the area of both the triangles.

We know that area of parallelogram is equal to product of its base and height. Therefore,

Area of each triangle $=\frac{1}{2} \times($ area of parallelogram $)$
Area of triangle

$$
\begin{aligned}
& =\frac{1}{2} \times(\text { base } \times \text { height }) \\
& =\frac{1}{2} \times \mathrm{b} \times \mathrm{h}=\frac{1}{2} \mathrm{bh}
\end{aligned}
$$

Thus, the area of a triangle is equal to half the product of its base (b) and height (h) i.e.,
$A=\frac{1}{2} \mathbf{b h}$
Example 2: Find the area of the triangle in the given figure.
Solution:

Base of triangle $(\mathrm{b})=13 \mathrm{~cm}$
Height of triangle $(\mathrm{h})=6 \mathrm{~cm}$
Area of a triangle $(\mathrm{A})=\frac{1}{2}$ (base \times height $)$ or $\frac{1}{2} \mathrm{bh}$
Therefore, $\quad \mathrm{A}=\frac{1}{2} \times 13 \times 6$

$$
=13 \times 3=39 \mathrm{~cm}^{2}
$$

Thus the area of the triangle is $39 \mathrm{~cm}^{2}$.

13．2．2
 ，وكَ الانلاعكو6 6

 نربكانِ

$$
\text { 39 3 بالعّم = 3 } 31
$$

$$
\begin{aligned}
& \text {. } 13 \\
& \text { 6 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ت:تازكالان } \\
& \text { (بن } \\
& =\frac{1}{2} \times b \times h=\frac{1}{2} b h
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \times(l \times b)=\frac{1}{2} l b
\end{aligned}
$$

Example 3: Find the area of $\triangle \mathrm{ABC}$.
Solution: Base of the triangle (b) $=8 \mathrm{~cm}$
Height of the triangle $(\mathrm{h})=6 \mathrm{~cm}$
Area of the triangle $(A)=\frac{1}{2} \mathrm{bh}$

Therefore, $\quad \mathrm{A}=\frac{1}{2} \times 8 \times 6=24 \mathrm{~cm}^{2}$
Thus, the area of $\triangle \mathrm{ABC}=24 \mathrm{~cm}^{2}$

Notice that in a right angle triangle two of its sides can be the height.

Try This

In Figure all the triangles are on the base $\mathrm{AB}=25$ cm . Is the height of each of the triangles drawn on base AB , the same?

Will all the triangles have equal area? Give reasons to support your answer. Are the triangles congruent also?

Exercise - 3

1. Find the area of each of the following triangles.

$$
\begin{aligned}
& \text { - } \\
& 8 \\
& \text { 6 } 6
\end{aligned}
$$

$$
\begin{aligned}
& \text { لـ ال } \mathrm{A}=\frac{1}{2} \times 8 \times 6 \\
& \text { 24مٌ }
\end{aligned}
$$

2. In $\triangle \mathrm{PQR}, \mathrm{PQ}=4 \mathrm{~cm}, \mathrm{PR}=8 \mathrm{~cm}$ and $\mathrm{RT}=6 \mathrm{~cm}$. Find (i) the area of $\triangle \mathrm{PQR}$ (ii) the length of QS.

3. $\triangle \mathrm{ABC}$ is right-angled at A . AD is perpendicular to $\mathrm{BC}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=13 \mathrm{~cm}$ and $A C=12 \mathrm{~cm}$. Find the area of $\triangle A B C$. Also, find the length of $A D$.

4. $\triangle \mathrm{PQR}$ is isosceles with $\mathrm{PQ}=\mathrm{PR}=7.5 \mathrm{~cm}$ and $\mathrm{QR}=9 \mathrm{~cm}$. The height PS from P to QR , is 6 cm . Find the area of $\triangle P Q R$ and length of RT.

5. ABCD rectangle with $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=16 \mathrm{~cm}$ and $\mathrm{AE}=4 \mathrm{~cm}$. Find the area of $\triangle \mathrm{BCE}$. Is the area of $\triangle \mathrm{BEC}$ equal to the sum of the area of $\triangle \mathrm{BAE}$ and $\triangle \mathrm{CDE}$? Why?

طولمعلوم مَبجُ

. 3 AC= 12

 $\triangle B C E$

6. Ramu says that the area of $\triangle \mathrm{PQR}$ is, $\mathrm{A}=\frac{1}{2} \times 7 \times 5 \mathrm{~cm}^{2}$

Gopi says that it is, $\mathrm{A}=\frac{1}{2} \times 8 \times 5 \mathrm{~cm}^{2}$. Who is correct? Why?

7. Find the base of a triangle whose area is $220 \mathrm{~cm}^{2}$ and height is 11 cm .
8. In a triangle the height is double the base and the area is $400 \mathrm{~cm}^{2}$. Find the length of the base and height.
9. The area of triangle is equal to the area of a rectangle whose length and breadth are 20 cm and 15 cm respectively. Calculate the height of the triangle if its base measures 30 cm .
10. In Figure ABCD find the area of the shaded region $(\overline{\mathrm{DF}}=\overline{\mathrm{CF}})$.

11. In Figure ABCD , find the area of the shaded region.

$$
\text { A } \mathrm{C} \text { A = }=\frac{1}{2} \times 8 \times 5 \mathrm{~cm}^{2}
$$

7.

$$
\begin{aligned}
& \text { (} \overline{D F}=\overline{C F}) \text {. }
\end{aligned}
$$

12. Find the area of a parallelogram PQRS , if $\mathrm{PR}=24 \mathrm{~cm}$ and $\mathrm{QU}=\mathrm{ST}=8 \mathrm{~cm}$.

13. The base and height of the triangle are in the ratio $3: 2$ and its area is $108 \mathrm{~cm}^{2}$. Find its base and height.

13.3 Area of a rhombus

Santosh and Akhila are good friends. They are fond of playing with paper cut-outs. One day, Santosh gave different triangle shapes to Akhila. From these she made different shapes of parallelograms. These parellelograms are given below-

Santosh asked Akhila, 'which parallelograms has 4 equal sides?"
Akhila said, 'the last two have equal sides."
Santhosh said, 'If all the sides of a parallelogram are equal, it is called a Rhombus.'
Now let us learn how to calculate the area of a Rhombus.
Like in the case of a parallelogram and triangle, we can use the method of splitting into congruent triangles to find the area of a rhombus.

 قاع
13.3

 تقوازكالان نا عا,

ABCD is a rhombus.
Area of rhombus $\mathrm{ABCD}=($ area of $\triangle \mathrm{ACD})+($ area of $\triangle \mathrm{ACB})$

$$
\begin{aligned}
= & \left(\frac{1}{2} \times \mathrm{AC} \times \mathrm{OD}\right)+\left(\frac{1}{2} \times \mathrm{AC} \times \mathrm{OB}\right) \\
& \text { diagonals bisect perpendicularly } \\
= & \frac{1}{2} \mathrm{AC} \times(\mathrm{OD}+\mathrm{OB}) \\
= & \frac{1}{2} \mathrm{AC} \times \mathrm{BD} \\
= & \frac{1}{2} \mathrm{~d}_{1} \times \mathrm{d}_{2}\left(\text { as } \mathrm{AC}=\mathrm{d}_{1} \text { and } \mathrm{BD}=\mathrm{d}_{2}\right)
\end{aligned}
$$

In other words, the area of a rhombus is equal to half the product of its diagonals i.e., A $=\frac{1}{2} \mathrm{~d}_{1} \mathrm{~d}_{2}$

Example 4: Find the area of rhombus ABCD
Solution : Length of the diagonal $\left(\mathrm{d}_{1}\right) \quad=7.5 \mathrm{~cm}$
Length of the other diagonal $\left(\mathrm{d}_{2}\right)=5.6 \mathrm{~cm}$
Area of the rhombus (A) $\quad=\frac{1}{2} \mathrm{~d}_{1} \mathrm{~d}_{2}$

Therefore, $\mathrm{A}=\frac{1}{2} \times 7.5 \times 5.6=21 \mathrm{~cm}^{2}$
Thus, area of rhombus $\mathrm{ABCD}=21 \mathrm{~cm}^{2}$
Example 5: The area of a rhombus is $60 \mathrm{~cm}^{2}$ and one of its diagonals is 8 cm . Find the other diagonal.

Solution: Length of one diagonal $\left(\mathrm{d}_{1}\right) \quad=8 \mathrm{~cm}$
Length of the other diagonal $=\mathrm{d}_{2}$
Area of rhombus

$$
=\frac{1}{2} \times \mathrm{d}_{1} \times \mathrm{d}_{2}
$$

Therefore,

$$
\begin{aligned}
60 & =\frac{1}{2} \times 8 \times \mathrm{d}_{2} \\
\mathrm{~d}_{2} & =15 \mathrm{~cm} .
\end{aligned}
$$

Thus, length of the other diagonal is 15 cm .

ص:-

$$
5.65 \text { " } 5.6
$$

$$
60=\frac{1}{2} \times 8 \times \mathrm{d}_{2}
$$

$$
\mathrm{d}_{2}=\boldsymbol{\sim} 15
$$

$$
\begin{aligned}
& \text { (اكيُّيّن }
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\frac{1}{2} \times \mathrm{AC} \times \mathrm{OD}\right]+\left[\frac{1}{2} \times \mathrm{AC} \times \mathrm{OB}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \mathrm{AC} \times(\mathrm{OD}+\mathrm{OB}) \\
& =\frac{1}{2} \mathrm{AC} \times \mathrm{BD} \\
& =\frac{1}{2} \mathrm{~d}_{1} \times \mathrm{d}_{2} \quad \mathrm{BD}=\mathrm{d}_{2}, و \mathrm{AC}=\mathrm{d}_{1} \cup \mathrm{Cl}_{4} \text { ج }
\end{aligned}
$$

Exercise 4

1. Find the area of the following rhombuses.

2. Find the missing values.

Diagonal-1 $\left(\mathrm{d}_{1}\right)$	Diagonal-2 $\left(\mathrm{d}_{2}\right)$	Area of rhombus
12 cm	16 cm	
27 mm		$2025 \mathrm{~mm}^{2}$
24 m	57.6 m	

3. If length of diagonal of a rhombus whose area $216 \mathrm{sq} . \mathrm{cm}$. is 24 cm . Then find the length of second diagonal.
4. The floor of a building consists of 3000 tiles which are rhombus shaped. The diagonals of each of the tiles are 45 cm and 30 cm . Find the total cost of polishing the floor tiles, if cost per m^{2} is $₹ 2.50$.

13.4 Circumference of a circle

Nazia is playing with a cycle tyre. She is rotating the tyre with a stick and running along with it.

What is the distance covered by tyre in one rotation?
The distance covered by the tyre in one rotation is equal to the length around the wheel. The length around the tyre is also called the circumference of the tyre .

What is the relation between the total distance covered by the tyre
 and number of rotations?

Total distance covered by the tyre $=$ number of rotations \times length around the tyre.

1

2.

13.4

 -هُ

Activity 2

Jaya cut a circular shape from a cardboard. She wants to stick lace around the card to decorate it. Does the length of the lace required by her is equal to the circumference of the card? Can she measure the circumference of the card with the help of a ruler?

Let us see what Jaya did?
Jaya drew a line on the table and marked its starting point A. She then made a point on the edge of the card. She placed the circular card on the line, such that the point on the card coincided with point A. She then rolled the card along the line, till the point on the card touched the line again. She marked this point B . The length of line AB is the circumference of the circular card. The length of the lace required around the circular card is the distance $A B$.

Try This

Take a bottle cap, a bangle or any other circular object and find its circumference using a string.

It is not easy to find the circumference of every circular shape using the above method. So we need another way for doing this. Let us see if there is any relationship between the diameter and the circumference of circles.

A man made six circles of different radii with cardboard and found their circumference using a string. He also found the ratio between the circumference and diameter of each circle.

He recorded his observations in the following table-

Circle	Radius	Diameter	Circumference	Ratio of circumference and diameter
1.	3.5 cm	7.0 cm	22.0 cm	$\frac{22}{7}=3.14$
2.	7.0 cm	14.0 cm	44.0 cm	$\frac{44}{14}=3.14$
3.	10.5 cm	21.0 cm	66.0 cm	
4.	21.0 cm	42.0 cm	132.0 cm	
5.	5.0 cm	10.0 cm	32.0 cm	
6.	15.0 cm	30.0 cm	94.0 cm	

هدرسكتّبـ

,

،ونقّب آ يَّ ويكّ

وارٌ	زصفقط	قر	كي	
1	-3.5	-7.0	-22.0	$\frac{22}{7}=3.14$
2	-7.0	م14.0	-44.0	$\frac{44}{14}=3.14$
3	-10.5	-21.0	~66.0	
4	-21.0	-42.0	~ 132.0	
5	-5.0	-10.0	-32.0	
6	-15.0	-30.0	-94.0	

What can you infer from the above table? Is the ratio between the circumference and the diameter of each circle approximately the same? Can we say that the circumference of a circle is always about three times its diameter?

The approximate value of the ratio of the circumference to the diameter of a circle is $\frac{22}{7}$ or 3.14. Thus it is a constant and is denoted by π (pi).

Therefore, $\frac{c}{d}=\pi$ where ' c ' is the circumference of the circle and ' d ' its diameter.

Since, $\quad \frac{c}{d}=\pi$

$$
\mathrm{c}=\pi \mathrm{d}
$$

Since, diameter of a circle is twice the radius i.e. $\mathrm{d}=2 \mathrm{r}(\mathrm{r}=$ radius $)$

$$
\mathrm{c}=\pi \times 2 \mathrm{r} \quad \text { or } \quad \mathrm{c}=2 \pi \mathrm{r}
$$

Thus, circumference of a circle, $c=\pi d$ or $2 \pi r$

Example 6: Find the circumference of a circle with diameter 10 cm . (Take $\pi=3.14$)
Solution: Diameter of the circle (d) $=10 \mathrm{~cm}$.
Circumference of circle (c) $=\pi \mathrm{d}$

$$
=3.14 \times 10
$$

$$
\mathrm{c}=31.4 \mathrm{~cm}
$$

Thus, the circumference of the circle is 31.4 cm .
Example 7: Find the circumference of a circle with radius 14 cm . (Take $\pi=\frac{22}{7}$)
Solution : Radius of the circle (r) $\quad=14 \mathrm{~cm}$
Circumference of a circle (c) $=2 \pi \mathrm{r}$

$$
\text { Therefore, } \begin{aligned}
\text { c } & =2 \times \frac{22}{7} \times 14 \\
\text { c } & =88 \mathrm{~cm}
\end{aligned}
$$

Thus, the circumference of the circle is 88 cm .

$$
\begin{aligned}
& \text { اس الئ } \\
& \text { 令 } \frac{c}{d}=\pi \\
& \mathrm{c}=\pi \mathrm{d}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}=\pi \times 2 \mathrm{r} \stackrel{\mathrm{c}}{\mathrm{c}}=2 \pi \mathrm{r} \\
& \text { با }
\end{aligned}
$$

$$
\begin{aligned}
& \text { صل: }
\end{aligned}
$$

$$
\begin{aligned}
& =3.14 \times 10 \\
& \mathrm{C}=31.4
\end{aligned}
$$

$$
\begin{aligned}
& \text { قل: } \\
& \text { 和 (c) }=2 \pi r \\
& \text { 荈C }=2 \times \frac{22}{7} \times 14 \\
& \mathrm{C}=\text { ド88 }
\end{aligned}
$$

Exercise - 5

1. Find the circumference of a circle whose radius is-
(i) 35 cm
(ii) 4.2 cm
(iii) 15.4 cm
2. Find the circumference of circle whose diameter is-
(i) 17.5 cm
(ii) 5.6 cm
(iii) 4.9 cm

Note : take $\pi=\frac{22}{7}$ in the above two questions.
3. (i) Taking $\pi=3.14$, find the circumference of a circle whose radius is
(a) 8 cm
(b) 15 cm
(c) 20 cm
(ii) Calculate the radius of a circle whose circumference is 44 cm ?
4. If the circumference of a circle is 264 cm , find its radius. Take $\pi=\frac{22}{7}$.
5. If the circumference of a circle is 33 cm , find its diameter.
6. How many times will a wheel of radius 35 cm be rotated to travel 660 cm ?
(Take $\pi=\frac{22}{7}$).
7. The ratio of the diameters of two circles is $3: 4$. Find the ratio of their circumferences.
8. A road roller makes 200 rotations in covering 2200 m . Find the radius of the roller.
9. The minute hand of a circular clock is 15 cm . How far does the tip of the minute hand move in 1 hour? (Take $\pi=3.14$)

10.

A wire is bent in the form of a circle with radius 25 cm . It is straightened and made into a square. What is the length of the side of the square?
(i) 35%
(ii) 4.2 م
(iii) 15.4
(i) 17.5
(ii) 5.6
(iii) 4.9
(a) 8 ~
(b) 15
(c) 20 م

. 4

7. 7

$$
\begin{aligned}
& \text { كياشوكا }
\end{aligned}
$$

13.5 Rectangular Paths

We often come across such walking paths in garden, park and playground areas. Now we shall learn how to measure the areas of such paths as this often useful in calculating their costs of construction.

Example 8: Aplot is 60 m long and 40 m wide. Apath 3 m wide is to be constructed around the plot. Find the area of the path.

Solution : Let ABCD be the given plot. A 3 m wide path is running all around it. To find the area of this path we have to subtract the area of the smaller rectangle $A B C D$ from the area of the bigger rectangle EFGH.

Length of inner rectangle $\mathrm{ABCD}=60 \mathrm{~m}$
Breadth of inner rectangle $\mathrm{ABCD}=40 \mathrm{~m}$
Area of inner rectangle $\mathrm{ABCD}=(60 \times 40) \mathrm{m}^{2}$
$=2400 \mathrm{~m}^{2}$
Width of the path $=3 \mathrm{~m}$
Length of outer rectangle EFGH $=60 \mathrm{~m}+(3+3) \mathrm{m}$
$=66 \mathrm{~m}$
Breadth of outer rectangle EFGH $=40 \mathrm{~m}+(3+3) \mathrm{m}$
$=46 \mathrm{~m}$

岢

-
; ; ; رُك ABCD,

60

$=$ 2400
㢄
(3+3)
$=\$ 66$

$$
=\$ 46
$$

$$
\begin{aligned}
\text { Area of the outer rectangle EFGH } & =66 \times 46 \mathrm{~m}^{2} \\
& =3036 \mathrm{~m}^{2}
\end{aligned}
$$

Area of the path = Area of the outer rectangle EFGH - Area of the inner rectangle ABCD
Therefore, area of the path $=(3036-2400) \mathrm{m}^{2}$
$=636 \mathrm{~m}^{2}$
Example 9: The dimensions of a rectangular field are 90 m and 60 m . Two roads PQRS and EFGH are constructed such that they cut each other at the centre of the field and are parallelto its sides as shown in the figure. If the width of each road is 3 m , find-
(i) The area covered by the roads.
(ii) The cost of constructing the roads at the rate of $₹ 110$ per m^{2}.

Solution : Let ABCD be the rectangular field. PQRS and EFGH are the 3 m roads.
From the question we know that,

$$
\begin{array}{ll}
\mathrm{PQ}=3 \mathrm{~m}, \text { and } & \mathrm{PS}=60 \mathrm{~m} \\
\mathrm{EH}=3 \mathrm{~m}, \text { and } & \mathrm{EF}=90 \mathrm{~m} \\
\mathrm{KL}=3 \mathrm{~m} & \mathrm{KN}=3 \mathrm{~m}
\end{array}
$$

Here, KLMN is a square.
(i) Area of the crossroads is the area of the rectangle PQRS and the area of the rectangle EFGH. As is clear from the picture, the area of the square KLMN will be taken twice in this calculation thus needs to be subtracted once.

Area of the roads $=$ Area of the rectangle $\mathrm{PQRS}+$ Area of the rectangle EFGH

- Area of the square KLMN

$$
\begin{aligned}
& =(\mathrm{PS} \times \mathrm{PQ})+(\mathrm{EF} \times \mathrm{EH})-(\mathrm{KL} \times \mathrm{KN}) \\
& =(60 \times 3)+(90 \times 3)-(3 \times 3) \\
& =(180+270-9) \\
& =441 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { = } \\
& \text { انردرون }
\end{aligned}
$$

$$
\begin{aligned}
& \text { = }
\end{aligned}
$$

زض

- KLMN~

$$
\begin{aligned}
& =(\mathrm{PS} \times \mathrm{PQ})+(\mathrm{FH} \times \mathrm{EH})-(\mathrm{KL} \times \mathrm{KN}) \\
& =(60 \times 3)+(90 \times 3)-(3 \times 3) \\
& \text { (} \\
& \text { 441منّعبيم }
\end{aligned}
$$

(ii) Cost of construction $=₹ 110$ per m${ }^{2}$

Cost of constructing $441 \mathrm{~m}^{2}=110 \times 441$
Cost of constructing the roads $=₹ 48,510$
Example 10: A path of 5 m wide runs around a square park of side 100 m . Find the area of the path. Also find the cost of cementing it at the rate of ₹ 250 per $10 \mathrm{~m}^{2}$

Solution : In the figure PQRS is a square park. The shaded region represents the 5 m wide path.

Length of side of square PQRS $\quad=100 \mathrm{~m}$
Area of the square PQRS $\quad=(\text { side })^{2}=(100 \mathrm{~m})^{2}=10000 \mathrm{~m}^{2}$
Length of side of square ABCD $=100+(5+5)=110 \mathrm{~m}$
Area of the square $\mathrm{ABCD} \quad=(\text { side })^{2}=(110 \mathrm{~m})^{2}=12100 \mathrm{~m}^{2}$
\therefore Area of the path $=$ Area of square $\mathrm{ABCD}-$ Area of square PQRS

$$
=(12100-10000)=2100 \mathrm{~m}^{2}
$$

Cost of the cementing per $10 \mathrm{~m}^{2}=₹ 250$
Therefore, cost of the cementing $1 \mathrm{~m}^{2}=\frac{250}{10}$
Thus, cost of cementing $2100 \mathrm{~m}^{2}=\frac{250}{10} \times 2100=₹ 52,500$
Therefore, cost of cementing is ₹52,500.

Exercise - 6

1. A path 2.5 m wide is running around a square field whose side is 45 m . Determine the area of the path.
2. The central hall of a school is 18 m long and 12.5 m wide. A carpet is to be laid on the floor leaving a strip 50 cm wide near the walls, uncovered. Find the area of the carpet and also the uncovered portion?

$-{ }^{\bullet}$

$$
\text { اس اسק }=\frac{250}{10}
$$

Rs. 52,500/-

6-

$$
\begin{aligned}
& 100
\end{aligned}
$$

$$
\begin{aligned}
& 100 \\
& 12100 \text { مرنّ بيمّ = }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2100 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) } \\
& \text { = } 100 \times 441 \\
& \text { Rs. 48510/- }
\end{aligned}
$$

3. The length of the side of a grassy square plot is 80 m . Two walking paths each 4 m wide are constructed parallel to the sides of the plot such that they cut each other at the centre of the plot. Determine the area of the paths.
4. A verandah 2 m wide is constructed all around a room of dimensions $8 \mathrm{~m} \times 5 \mathrm{~m}$. Find the area of the verandah
5. The length of a rectangular park is 700 m and its breadth is 300 m . Two crossroads, each of width 10 m , cut the centre of a rectangular park and are parallel to its sides. Find the area of the roads. Also, find the area of the park excluding the area of the crossroads.

Looking Back

- The area of the parallelogram (A) is equal to the product of its base (b) and corresponding height (h) i.e., $A=b h$ (Any side of the parallelogram can be taken as the base).

- The area of a triangle (A) is equal to halfthe product of its base (b) and height (h) i.e., $A=\frac{1}{2}$ bh.
- The area of a rhombus (A) is equal to half the product of its diagonals i.e., $\mathbf{A}=\frac{1}{2} \mathrm{~d}_{1} \mathrm{~d}_{2}$.
- The circumference of a circle $(\mathrm{C})=2 \pi r$ where r is the radius of the circle and $\pi=\frac{22}{7}$ or 3.14 .

Archimedes (Greece)

287-212 BC
He calculated the value of π first time.
He also evolved the mathematical formulae for finding out the circumference and area of a circle.

"م غكياسطا:-

 A $=\frac{1}{2}$ mh ين

$$
\begin{aligned}
& \text { 옹 } \mathrm{A}=\frac{1}{2} \mathrm{~d}_{1} \mathrm{~d}_{2} \\
& \text { b }
\end{aligned}
$$

UNDERSTANDING 3D AND 2D SHAPES

14

14.0 Introduction

We have been introduced to various three-dimensional shapes in class VI. We have also identified their faces, edges and vertices. Let us first review what we have learnt in class VI.

Exercise - 1

1. Given below are the pictures of someobjects. Categorise and fill write their names according to their shape and fill the table with name of it.

				Cuboid	Cone
Sphere	Cylinder	Pyramid			

2. Write names of at least 2 objects from day-to-day life, which are in the shape of the basic 3D shapes given below:
(i) Cone
(ii) Cube
(iii) Cuboid
(iv) Sphere

(v) Cylinder
3. Identify and state the number of faces, edges and vertices of the figures given below:

Faces			
Edges			
Vertices			

14.1 Nets of 3-D shapes

We now visualise 3-D shapes on 2-D surfaces, that is on a plain paper. This can be done by drawing the 'nets' of the various 3-D figures.

Take a cardboard box (cartoon of tooth paste or shoes etc.,). Cut the edges to lay the box flat. You have now a net for that box. A net is a sort ofskeleton-outline in 2-D (Figure 1), which, when folded (Figure 2), results in a 3-D shape (Figure 3).

Figure 1

Figure 2

Figure 3

2-

ا			
			之;
			كا
			رال

14.1
 .

1-5

2-

3- $5=$

Here is a net pattern for a box. Trace it and paste it on a thick paper and try to make the box by suitably folding and gluing together. What is the shape of the box?

Figure 2

Figure 1

Similarly, take a cover of an ice-cream cone
 or any like shape. Cut it along it's slant surface as shown in Figure 1. You will get the net for the cone as shown in Figure 2.

Try This

Take objects having different shapes (cylinder, cube, cuboid and cone) and cut them to get their nets with help of your teachers or friends.

You will come to know by the above activity that you have different nets for different shapes. Also, each shape can also have more than one net according to the way we cut it.

Exercise - 2

1. Some nets are given below. Trace them and paste them on a thick paper. Try to make 3-D shapes by suitably folding them and gluing together. Match the net with it's 3-D shape.

Nets

3D shapes

3 اسی

: بلا
($2 \int^{6 *(4)}$

2-
/
-

2- *
~ 1 الباركا اثشكال:

س~~ البحاوكا

2. Three nets for each shape are given here. Match the net with its 3D-shape.
(i)

(a)

(b)

(c)
(ii)

3. A dice is a cube with dots on each face. The opposite faces of a dice always have a total of seven dots on them.

Here are two nets to make dice. Insert the suitable number of dots in blanks.

(a)

(b)
(a)

(b)

(c)
 ك́ ! ; بُي

Play This

You and your friend sit back to back. One of you read out a net to make a 3-D shape, while the other copies it and sketches or builds the described object.

14.2 Drawing solids on a flat surface

Our drawing surface is a paper, which is a flat surface. When you draw a solid shape, the images are somewhat distorted. It is a visual illusion. You will find here two techniques to help you to draw the 3-D shapes on a plane surface.

14.2.1 Oblique Sketches

Here is a picture of a cube. It gives a clear idea of how the cube looks, when seen from the front. You do not see all the faces as we see in reality. In the picture, all the lengths are not equal, as they are in a real cube. Still, you are able to recognise it as a cube. Such a sketch of a solid is called an oblique sketch.

How can you draw such sketches? Let us attempt to learn the technique. You need a squared (lines or dots) paper. Initially practice to draw on these sheets and later on a plain sheet (without the aid of squared lines or dots!) Let us attempt to draw an oblique sketch of a $3 \times 3 \times 3$ cube (each edge is 3 units).

Step 1
Draw the front face.

Step 3
Join the corresponding corners

Step 2
Draw the opposite face. Sizes of the faces have to be same, but the sketch is somewhat off-set from step 1.

Step 4
Redraw using doted lines for hidden edges.
(It is a convention) The sketch is ready now.

14.2

14.2.1

户

قرم : :نقابلق پا

\% \%

In the above oblique sketch did you notice the following?
(i) The sizes of the front face and its opposite face are same.
(ii) The edges, which are all equal in a cube, appear so in the sketch, though the actual measures of edges are not taken so.

You could now try to make an oblique sketch of a cuboid (remember the faces in this case are rectangles).

You can draw sketches in which measurements also agree with those of a given solid. To do this we need what is known as an isometric sheet. Let us try to make a cuboid with dimensions 7 cm length, 3 cm breadth and 4 cm height on an isometric sheet.

14.2.2 Isometric Sketches

To draw sketches in which measurements also agree with those of the given solid, we can use isometric dot sheets. In such a sheet the paper is divided into small equilateral triangles made up of dots or lines. Let us attempt to draw an isometric sketch of a cuboid of dimensions $7 \times 3 \times 4$ (which means the edges forming length, breadth and height are 7, 3, 4 units respectively).

Step 1
Draw a rectangle to show the front face

Connect the matching corners
with appropriate line segments.

Step 2
Draw four parallel line segments of length 3 units starting from the fourcorners of the rectangle.

This is an isometric sketch of a cuboid.

(i

,

(Isometric Sketches)) (4.2.2

Note that the measurements of the solid are of exact size in an isometric sketch; this is not so in the case of an oblique sketch.

Example 1 : Here is an oblique sketch of a cuboid. Draw an isometric sketch that matches this drawing.

Solution : The length, breadth and height are 3, 3 and 6 units respectively

Exercise - 3

1. Use an isometric dot paper and make an isometric sketch for each one of the given shapes.
(i)

(ii)

(iii)

(iv)

(\%

$-2: 10.0$ ": الَ

3- \#

1.

(i)

(ii)

(iii)

(iv)

2. The dimensions of a cuboid are $5 \mathrm{~cm}, 3 \mathrm{~cm}$ and 2 cm . Draw three different isometric sketches of this cuboid.
3. Three cubes each with 2 cm edge are placed side by side to form a cuboid. Draw an oblique or isometric sketch of this cuboid.
4. Make an oblique sketch for each of the given isometric shapes.
(i)

(iii)

(iv)

5. Give (i) an oblique sketch and (ii) an isometric sketch for each of the following:
(a) A cuboid of dimensions $5 \mathrm{~cm}, 3 \mathrm{~cm}$ and 2 cm . (Is your sketch unique?)
(b) A cube with an edge 4 cm long.

14.3 Visualising solid objects

Sometimes when you look at combined shapes, some of them may be hidden from your view.

 4.

(iii)

(iv)

$$
\begin{aligned}
& \text { (b) اليكسعبك كناره40 }
\end{aligned}
$$

14.3

Here are some activities to help you visualise some solid objects and how they look. Take some cubes and arrange them as shown below.

Now ask your friend to see from the front and guess the total number of cubes in the following arrangements.

Try This
Estimate the number of cubes in the following arrangements.

Such visualisations are very helpful.
Suppose you form a cuboid by joining cubes. You will be able to estimate what the length, breadth and height of the cuboid would be.

Example 2: If two cubes of dimensions $2 \mathrm{~cm} \times 2 \mathrm{~cm} \times 2 \mathrm{~cm}$ are placed side by side, what would the dimensions of the resulting cuboid be?

Solution : As you can see when kept side by side, the length is the only measurement which increases.

Length $=2+2=4 \mathrm{~cm}$.

Breadth $=2 \mathrm{~cm}$ and Height $=2 \mathrm{~cm}$.

.

 ;ن

قِيكَ
شل2:- آكربكَبناج ,

$\underset{\rightleftarrows}{2 \mathrm{~cm}} \mathrm{~L} \xrightarrow{2 \mathrm{~cm}}$

Try This

1. Two dice are placed side by side as shown. Can you say what the total would be on the faces opposite to them?
(i) $5+6$
(ii) $4+3$

(Remember that in a dice the sum of numbers on opposite faces is 7)
2. Three cubes each with 2 cm edge are placed side by side to form a cuboid. Try to make an oblique sketch and say what could be its length, breadth and height.

14.3.1 Viewing different sections of a solid

Now let us see how an object which is in 3-D can be viewed in different ways.

14.3.1a) One way to view an object is by cutting or slicing the object

Slicing game

Here is a loaf of bread. It is like a cuboid with square faces. You 'slice' it with a knife.

When you give a 'horizontal' cut, you get several pieces,
 as shown in the figure. Each face of the piece is a square! We call this face a 'cross-section' of the whole bread. The cross section is nearly a square in this case.

Beware! If your cut is 'vertical' you may get a different cross section! Think about it. The boundary of the cross-section you obtain is a plane curve. Do you notice it?

A kitchen play

Have you noticed cross-sections of some vegetables when they are cut for the purposes of cooking in the kitchen? Observe the various slices and get aware of the shapes that results as cross-sections.

Do This

1. Make clay (or plasticine) models of the following solids and make vertical or horizontal cuts. Draw rough sketches of the cross-sections you obtain. Name them if possible.

-

5+6 (ii) 4+3 (i) تول E
(, (9)
Uا

'ُوّناجام
 --14.3.1(a)

 ت

登
 كوط

2. What cross-sections do you get when you give a (i) vertical cut (ii) horizontal cut to the following solids?
(a) A brick (b) A round apple (c) A die (d) A cylindrical pipe (e) An ice cream cone

14.3.1b) Another Way is by Shadow Play

A shadow play

Shadows are a good way to illustrate how three-dimensional objects can be viewed in two dimensions. Have you seen a shadow play? It is a form of entertainment using solid articulated figures in front of an illuminated backdrop to create the illusion of moving images. It makes some indirect use of

Figure 1 ideas of Mathematics.

You will need a source of light and a few solid shapes for this activity. If you have an overhead projector, place the solid under the lamp and do these investigations.

Keep a torchlight, right in front of a cone. What type of shadow does it cast on the screen? (Figure 1).
The solid is three-dimensional; what about the shadow?
If, instead of a cone, you place a cube in the above game, what type of shadow will you get?
Experiment with different positions of the source of light and with different positions of the solid object. Study their effects on the shapes and sizes of the shadows you get.

Here is another funny experiment that you might have tried already:
Place a circular tumbler in the open when the sun at the noon time is just right above it as shown in the figure below. What is the shadow that you obtain?

Will it be same during (a) afternoon?

(b) evening?

Study the shadows in relation to the position of the sun and the time of observation.

سا
位

 6م 6ثابه0 بيكي -

Exercise - 4

1. A bulb is kept burning just right above the following solids. Name the shape of the shadows obtained in each case. Attempt to give a rough sketch of the shadow. (You may try to experiment first and then answer these questions).

A ball

A cylindrical pipe

A book
2. Here are the shadows of some 3D objects, when seen under the lamp of an overhead projector. Identify the solid(s) that match each shadow. (There may be many answers for these!)

Looking Back

3D shapes can be visualised on 2D surfaces, that is on paper by drawing their nets.

Oblique sketches and isometric sketches help in visualising 3 D shapes on a plane surface.

Fun with a cube
A unit cube can fitted together with 7 other identical cubes to make a larger cube with an edge of 2 units as shown in figure.

How many unit cubes are needed to make a cube with an
 edge of 3 units?

4- ث

ابيسگين

اسنوانْنمإِّ

Kt
2.

وارُه

(i)

رُع

(ii)

بثلث

(iii)

(iv)

Fun with a cube

A unit cube can fitted together with 7 other identical cubes to make a larger cube with an edge of 2 units as shown in figure.

How many unit cubes are needed to make a cube with an edge of 3 units?

SYMMETRY

15.0 Introduction

Look around you. You will find that many objects around you are symmetrical. So are the objects that are drawn below.

All these objects are symmetrical as they can be divided in such a way that their two parts coincide with each other.

15.1 Line Symmetry

Let us take some more examples and understand what we mean. Trace the following figures on a tracing paper.

Figure 1

Figure 2

Figure 3

Figure 4

Fold Figure 1 along the dotted line. What do you observe?
You will find that the two parts coincide with each other. Is this true in Figure 2 and 3?
You will observe that in Figure 2, this is true along two lines and in Figure 3 along many lines. Can Figure 4 be divided in the same manner?

Figure 1, 2 and 3 have line symmetry as they can be divided in such a manner that two parts of the figure coincide with each other when they are folded along the line of symmetry. The dotted line which divides the figures into two equal parts is the line of symmetry or axis of symmetry. As you have seen, an object can have one or more than one lines of symmetry or axes of symmetry.

15

Symmetry تثاكل

15.0

, Jeme
15.1

1 -

4-5

Try This

1. Name a few things in nature, that are symmetric.
2. Name 5 man-made things that are symmetric.

Exercise - 1

1. Given below are some fiugres. Which of them are symmetric? Draw the axes of symmetry for the symmetric figures.

(i)

(ii)

(iii)

(vii)
(x)
(xiii)

(iv)

(v)

(vi)

(ix)

(xii)

(xi)

(xiv)

(xv)

(xxi)

(xvi)

(xix)

(xxii)

(xvii)

(xx)

(xxiii)

15.1.1 Lines of symmetry for regular polygons

Look at the following closed figures.

A closed figure made from several line segments is called a 'Polygon'. Which of the above figures are polygons?

Try This

1. Can we make a polygon with less than three line segments?
2. What is the minimum number of sides of a polygon?

(xv)

(xxi)

(xvi)

(xix)

(xxii)

(xvii)

(xx)

(xxiii)
15.1.1

Observe the different triangles below.

Figure 1

Figure 2

Figure 3

In Figure 3, the triangle has equalsides and congruent angles. It is thus called a regular polygon.

A polygon, with all sides and all angles equal is called a 'Regular Polygon'.

Which of the following polygons are regular polygons?

Parallelogram

Square

Trapezium

Equilateral

Rectangle triangle

Now draw axes of symmetry for the following regular polygons.

Equilateral Triangle

Square

Regular Pentagon

Regular Hexagon

Write down your conclusions in the table below.

Regular Polygon	No. of sides	No. of axes of symmetry
Equilateral Traingle	3	3
Square		
Pentagon		
Hexagon		

Did you find any relationship between the number of sides of a regular polygon and number of axes of symmetry? You will find that the number of sides is equal to number of axes of symmetry.

Figure 1

Figure 2

Figure 3

متوازكالاضلاع

رنٌ

\square
نخ

متتطيل

ــاوكالاضناعثلث

تنتمُم

نتمطمس

You can verify above result by tracing out all the four figures on a paper, cutting them out and actually folding each figure. Try this.

Try This

1. Given below are different types of triangles. Do all the triangles have the same number of lines of symmetry? Which triangle has more?

2. Given below are different types of quadrilaterals. Do all of them have the same number of lines of symmetry? Which quadrilateral has the most?

Rhombus

Square

Rectangle

Hint: You can trace the triangles and quadrilaterals on a tracing paper and actually fold each figure to find the axes of symmetry.
3. On the basis of above two cases, can we say that a regular polygon has the maximum number of axes of symmetry.

Exercise - 2

1. In the figures given below find the axes of symmetry such that on folding along the axis the two dots fall on each other.

(i)

(ii)

(iii)

:

"

 - علإمكركين -

2. シ \square
3.

(i)

(ii)

(iii)

(iv)

(vii)

(v)

(viii)

(vi)

(ix)
2. Given the axes of symmetry for below figures. But only one part has a dot. Find the other dot.

(i)

(ii)

(iii)

(iv)
3. In the following incomplete figures, the mirror line (i.e the line of symmetry) is given as a dotted line. Complete each figure, performing reflection on the dotted (mirror) line and draw in your notebook (You might perhaps place a mirror along the dotted line and look into the mirror for the image). Can you recall the name of the figure you complete?

(i)

(ii)

(iii)

(iv)

(v)

(vi)
4. State whether the following statements are true or false.
(i) Every closed figure has an axis of symmetry.
(ii) A figure with at least one axis of symmetry is called a symmetric figure. ()
(iii) A regular polygon of 10 sides will have 12 axes of symmetry. ()
5. Construct a square and draw all its axes of symmetry. Measure the angles between each pair of successive axes of symmetry. What do you notice? Does the same rule apply for other regular polygons?

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(i

() (iii 5- اكيسرنِ بنا نوركيا؟ كيا يُصولووّر

15.2 Rotational Symmetry

Activity 1 : Trace the following diagram onto a tracing paper.

Try to fold the diagram so that its two parts coincide. Is this diagram symmetric?
Now, let us try to match the different positions of the diagram in another way. Draw the above diagram on a piece of paper. Mark a point 'O'at the centre and name the four edges of the paper A,B,C,D as shown in Figure 1.

Figure 1
Rotate the paper around the marked point ' O ' for 180°.

Figure 2
What do you notice in Figure 2? Does this diagram look different from the previous one?
Due to the rotation, the points A, B, C, D have changed position however the diagram seems to be unchanged. This is because the diagram has rotational symmetry.

Activity 2 : Lets make a wind wheel

- Take a square shaped paper.
- Fold it along the diagonals.
- Starting from one corner, cut the paper along the diagonals towards the centre, up to one fourth of the length of the diagonal. Do the same from the remaining corners.
- Fold the alternate corners towards the centre as shown in the figure.
- Stick the folded corners if required and fix the mid point to a stick with a pin so that the paper rotates freely.

$-<_{6}$ (symmetry

- Face it in the opposite direction of the wind. You will find it rotates

Now, let us rotate the wind-wheel by 90°. After each rotation of 90° you will see that the windwheel looks exactly the same. The wind-wheel has rotational symmetry.

Thus, if we rotate a figure, about a fixed point by a certain angle and the figure looks exactly the same as before, we say that the figure has rotational symmetry.

15.2.1 Angle of Rotational Symmetry

We know that the square has line symmetry and 4 axes of symmetry. Now, let us see if the square has rotational symmetry.

Consider a square as in Figure (i) with P as one of its corners with two axes of symmetry.

Let Figure 1 represent the initial position of square.
Rotate the square by 90 degrees about the centre. This quarter turn will lead to Figure 2. Note the position of P. In this way, rotate the square again through 90 degrees and you get Figure 3. When we complete four quarter turns, the square reaches its original position as in Figure 5. After each turn of 90°, the square looks exactly like it did in its original position. Hence, the square has rotational symmetry.

In the above activity all the positions in figure 2, figure 3, figure 4 and figure 5 obtained by the rotation of the first figure through $90^{\circ}, 180^{\circ}, 270^{\circ}$ and 360° look exactly like the original figure 1 . Minimum of these i.e., 90° is called the angle of rotational symmetry.

The minimum angle rotation of a figure to get exactly the same figure as original is called the "angle of rotational symmetry" or "angle of rotation".
-

15.2.1

إِباتط؟

 Р

Do This

1. What is the angle of rotational symmetry of a square?
2. What is the angle of rotational symmetry of a parallelogram?
3. What is the angle of rotational symmetry of a circle?

15.2.2 Order of rotational symmetry

In the above activity, the angle of rotational symmetry of square is 90° and the figure is turned through the angle of rotational symmetry for 4 times before it comes to original position. Now we say that the square has rotational symmetry of order 4.

Consider an equilateral triangle. Its angle of rotational symmetry is 120°. That means it has to be rotated 120° about its centre for 3 times to get exactly the same position as the original one. So the order of rotational symmetry of a equilateral triangle is 3 .

By these examples we conclude that the number of times a figure, rotated through its angle of rotational symmetry before it comes to original postion is called order of rotational symmetry.

Let us conclude from the above examples

- The centre of rotational symmetry of a square is its intersection point of its diagonals.
- The angle of rotational symmetry for a square is 90°.
- The order of rotational symmetry for a sqaure is 4 .

1. (i) Can you now tell the order of rotational symmetry for an equilateral triangle.

(ii) How many lines of symmetry are there in each figure?
(iii) What is the angle between every adjacent axes?
2. Look around you. Name 5 objects having rotational symmetry.

Note: It is important to understand that all figures have rotational symmetry of order 1, as can be rotated completely through 360° to come back to its original position. So we say that an object has rotational symmetry, only when the order of symmetry is more than 1 .
15.2.2 گُماوَتثاكَكاورج.

ربّ6

(i)

(ii)

(iii)

(iv)

2- او

Exercise - 3

1. Which of the following figures have rotational symmetry of order more than 1 ?

(i)

(ii)

(iii)

(iv)

(v)
2. Give the order of rotational symmetry for each figure.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)
3. Draw each of the shapes given below and fill in the blanks.

Shape	Centre of Rotation (intersection of diagonals/ Intersection of axes of symmetry)	Angle ofRotation	Order of Rota -tion
Square			
Rectangle			
Rhombus			
EquilateralTriangle			
Regular Hexagon			
Circle			
Semi-circle			

(i)

(ii)

(ii)

(vi)

(iii)

(vii)

(viii)

	گَماوزاويج		صورت
,			תٌ
			-
\square			-
			بساوكالاضلاع
			نتّغمس
			,
			لنفوارًه

15.3 Line symmetry and rotational symmetry

By now you must have realised that some shapes only have line symmetry and some have only rotational symmetry (oforder more than 1) and some have both. Squares and equilateral triangles have both line and rotational symmetry. The circle is the most perfect symmetrical figure, because it can be rotated about its centre through any angle and it will look the same. A circle also has unlimited lines of symmetry.

Example 1: Which of the following shapes have line symmetry? Which have rotational symmetry?

(i)

(ii)

(iii)

(iv)

Figure	Line symmetry	Rotational symmetry
1.	Yes	No
2.	No	Yes
3.	Yes	Yes
4.	No	Yes

Activity 3 :

- Take a square shaped paper.
- Fold it in the middle vertically first, then horizontally.
- Then fold along a diagnal such that the paper takes a triangular shape (Figure 4).
- Cut the folded edges as shown in the figure or as you wish (Figure 5).
- Now open the piece of paper.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

(i)

(ii)

(iii)

(iv)

-

$11^{6 *}$

22^{5}

33^{6}

46*

55

(i) Does this paper (after design cut) has line symmetry? If it has then how many lines of symmetry?
(ii) Does this paper has rotational symmetry?

Exercise - 4

1. Some english alphabets have fascinating symmetrical structures. Which capital letters have only one line of symmetry (like E)? Which capital letters have rotational symmetry of order 2 (like I)?

Examine and fill the following table, thinking along such lines.

Alphabets	Line symmetry	Number oflines symmetry	Rotational symmetry	Order of rotational symmetry
Z	No	0	Yes	2
S				
H				
O		1	No	-
E	Yes			
N				
C				

Home Project

Collect pictures of symmetrical figures from newspapers, magazines and advertisement pamphlets. Draw the axes of symmetry over them. Classify them.

(ii)

4- す

 ;

Looking Back

- The line which divides a figure into two identical parts is called the line ofsymmetry or axis of symmetry.
- An object can have one or more than one lines of symmetry or axes of symmetry.
- If we rotate a figure, about a fixed point by a certain angle and the figure looks exactly the same as before,
 we say that the figure has rotational symmetry.
- The minimum angle rotation of a figure to get exactly the same figure as original is called the "angle of rotational symmetry" or "angle of rotation".
- All figures have rotational symmetry of order 1 , as can be rotated completely through 360° to come back to their original position. So we say that an object has rotational symmetry only when the order of symmetry is more than 1 .
- Some shapes only have line symmetry and some have only rotational symmetry and some have both. Squares, equilateral triangles and circles have both line and rotational symmetry.

"
-

 -

$-$

10 - Algebraic Expressions

Exercise - 1

(1)
(i) $3 n$
(ii) $2 n$
(2) (i) - In fig. 4 number of coloured tiles will be 4 on each side.

- In fig. 5 number of coloured tiles will be 5 on each side.
(ii)Algebraic expression for the pattern $=4 \mathrm{n} ; 4,8,12,16,20 \ldots \ldots$ expression $=4 \mathrm{n}$
(iii) Algebraic expression for the pattern $=4 n+1 ; 9,13,17,21 \ldots$ expression $=4 n+1$
(i) $p+6$
(ii) $x-4$
(iii) $y-8$
(iv) $-5 q$
(v) $y \div 4$ or $\frac{y}{4}$
$\begin{array}{lllll}\text { (vi) } \frac{1}{4} \text { of } p q \text { or } \frac{p q}{4} & \text { (vii) } 3 z+5 & \text { (viii) } 10+5 x & \text { (ix) } 2 y-5 & \text { (x) } 10 y+13\end{array}$
(4)
(i) ' 3 more than x ' or 3 is added to x
(ii) 7 is substracted from ' y '
(iii) l is multiplied by 10 .
(iv) x is divided by 5
(v) m is multiplied by 3 and added to 11
(vi) y is multiplied by 2 and subtracted 5 or 5 is subtracted from 2 times of y.
(5)
(i) Constant
(ii) Variable
(iii) Constant
(iv) Variable

Exercise - 2

(1) (i) $\left(a^{2},-2 a^{2}\right)$
(ii) $(-y z, 2 z y)$
(iii) $\left(-2 x y^{2}, 5 y^{2} x\right)$
(iv) $(7 p,-2 p, 3 p)$ and $(8 p q,-5 p q)$
(2) Algebaric expression : Problem Numbers : i, ii, iv, vi, vii,ix, xi

Numerical expression: Problem Numbers: iii, v, viii, x
(3) Monomial i, iv, vi ; binomial: ii, v, vii ; trinomial: iii, viii, ix, multinomial: x
(4)
(i) 1
(ii) 3
(iii) 5 (iv) 4
(v) 2 (vi) 3
(5) (i) 1
(ii) 2
(iii) 4
(iv) 3
(v) 4
(vi) 2
(6) $x y+y z$
$2 x^{2}+3 x+5$

Exercise - 3

(1) $3 a+2 a=5 a$
(2) (i) $13 x$
(ii) $10 x$
(3) (i) $3 x$
(ii) $-6 p$
(iii) $11 \mathrm{~m}^{2}$
(4) (i) -1 (ii) 4
(iii) -2
(5) -9
(6) $2 x^{2}+11 x-9,-23$
(7) (i) 3
(ii) 5 (iii) -1
(8) $54 \mathrm{~cm} \times \mathrm{cm}=54 \mathrm{~cm}^{2}$
(9) ₹. 90

$$
\begin{equation*}
s=\frac{d}{t}=\frac{135 \mathrm{mt}}{10 \mathrm{sec}}=\frac{27}{2} \mathrm{mt.} / \mathrm{Sec} ., \text { or } 13 \frac{1}{2} \mathrm{mt} . / \mathrm{Sec.} \text {, or } 13.5 \mathrm{mt} . / \mathrm{Sec} ., \tag{10}
\end{equation*}
$$

Exercise - 4

(1)
(i) $-5 x^{2}+x y+8 y^{2}$
(ii) $10 \mathrm{a}^{2}+7 \mathrm{~b}^{2}+4 \mathrm{ab}$
(iii) $7 x+8 y-7 z$ (iv) $-4 x^{2}-5 x$
(2) $7 x+9$
(3) $18 x-2 y$
(4) $5 a+2 b$
(5)
(i) $a+2 b$ (ii) $(2 x+3 y+4 z)$
(iii) $\left(-4 a b-8 b^{2}\right)$
(iv) $4 p q-15 p^{2}-2 q^{2}$

（1）（i） $2 n$
（ii） 2 n
（2）（i）• －
（ii）$=4 n ; 4,8,12,16,20 \ldots=4 n$
（iii）الجبركبالرتكّتيب＝$=4 n+1 ; 9,13,17,21 \ldots=4 n+1$
（3）
（i）$p+6$
（ii）$x-4$
（iii）$y-8$
（iv）$-5 q$
（v）$y \div 4$ or $\frac{y}{4}$
（vi）$\frac{1}{4} 6 p q \downharpoonright \frac{p q}{4}$
（vii） $5+3 z$
（viii） $5 x+10 \quad$（ix） $2 y-5$
（x） $10 y+13$
（4）（i）
（ii）$\neq \dot{y}$
（iii）ك
（iv）
（v）亿约

（5）
（i）
（ii）
（iii）
或 （iv）
（1）
（i）$\left(a^{2},-2 a^{2}\right)$
（ii）$(-y z, 2 z y)$
（iii）$\left(-2 x y, 5 y^{2} x\right)$（iv）$(7 p,-2 p, 3 p)(8 p q,-5 p q)$
（2）：）：i，ii，iv，vi，vii，ix，xi （ ）：iii，v，viii，x

（4）
（i） 1
（ii） 3
（iii） 5 （iv） 4
（v） $2 \quad$（vi） 3
（5）（i） 1
（ii） 2
（iii） $4 \quad$（iv） 3
（v） 4
（vi） 2
（6）$x y+y z \quad 2 x^{2}+3 x+5$
（1） $3 \mathrm{a}+2 \mathrm{a}=5 \mathrm{a}$
（2）（ix） $13 x$
（ii） $10 x$
（3）（i） $3 x$（ii）$-6 p$
（iii） $11 \mathrm{~m}^{2}$（4）（i）－1
（ii） 4 （iii）－2
（5）-9
（6） $2 x^{2}+11 x-9-23$（7）（i） 3
（ii） 5 （iii）-1
（8） $54 \mathrm{~cm} \times \mathrm{cm}=54 \mathrm{~cm}^{2}$
（9）$\frac{2}{*}, 90$
（10）$s=\frac{d}{t}=\frac{\beta-135}{10 \mathrm{sec}}=\frac{27}{2} \mathfrak{L}$ ，
（1）（i）$-5 x^{2}+x y+8 y^{2}$
（ii） $10 \mathrm{a}^{2}+7 \mathrm{~b}^{2}+4 \mathrm{ab}$（iii）$x 7+8 y-7 z$（iv）$-4 x^{2}-5 x$
（2） $7 x+9$
（3） $18 x-2 y$
（4） $5 a+2 b$
（5）（i）$a+2 b$（ii） $2 x+3 y+4 z$（iii）$-4 a b-8 b^{2}$（iv） $4 p q-15 p^{2}-2 q^{2}$
(v) $-5 x^{2}+3 x+10$
(vi)
$2 x^{2}-2 \mathrm{xy}-5 \mathrm{y}^{2} \quad$ (vii) $3 m^{3}+4 m^{2}+7 m-$
(6) $7 x^{2}+x y-6 y^{2}$
(7) $4 x^{2}-3 x-2$ (8) $4 x^{2}-3 y^{2}-x y$
(9) $2 a^{2}+14 a+5$
(10) (i) $22 x^{2}+12 y^{2}+8 \mathrm{x} y$
(ii) $-14 x^{2}-10 y^{2}-20 x y$ or $-\left(14 x^{2}+10 y^{2}+20 x y\right)$
(iii) $20 x^{2}+5 y^{2}-4 x y$
(iv) $-8 y^{2}-32 x^{2}-30 x y$

11 - Exponents

Exercise - 1

1. (i) Base $=3$, exponent $=4,3 \times 3 \times 3 \times 3$ (ii) $\mathrm{Base}=7 x$, exponent $=2,7 \times x \times 7 \times x$ (iii) Base $=5 \mathrm{ab}$, exponent $=3,5 \times 5 \times 5 \times \mathrm{a} \times \mathrm{a} \times \mathrm{a} \times \mathrm{b} \times \mathrm{b} \times \mathrm{b}$
(iv) Base $=4 y$, exponent $=5,4 \times 4 \times 4 \times 4 \times 4 \times y \times y \times y \times y \times y$
2.

(i) 7^{5}
(ii) $3^{3} \times 5^{4}$
(iii) $2^{3} \times 3^{4} \times 5^{3}$
3.
(i) $2^{5} \times 3^{2}$
(ii) 2×5^{4}
(iii) $2 \times 3^{2} \times 5^{3}$
(iv) $2^{4} \times 3^{2} \times 5^{2}$
(v) $2^{5} \times 3 \times 5^{2}$
4.
(i) 3^{2}
(ii) 3^{5}
(iii) 2^{8}
5. (1) 17
(ii) 31
(iii) 25
(iv) 1

Exercise - 2

(1)
(i) 2^{14}
(ii) 3^{10}
(iii) 5^{5}
(iv) 9^{30}
(v) $\left(\frac{3}{5}\right)^{15}$
(vi) 3^{20}
(vii) $3^{4} \quad$ (viii) 6^{4} (ix) $2^{\text {ga }}$ (x) 10^{6} (xi) $\left(\frac{-5}{6}\right)^{10}=\frac{(-5)^{10}}{6^{10}}=\frac{5^{10}}{6^{10}} \quad$ (xii) $2^{10 a+10} \quad$ (xiii) $\frac{2^{5}}{3^{5}}$
$\begin{array}{lllll}\text { (xiv) } 15^{3} & \text { (xv) }-4^{3} \text { (xvi) } \frac{1}{9^{8}} & \text { (xvii) } \frac{1}{6^{4}} \text { (xviii) }-7^{15} & \text { (xix) } 6^{16} & \text { (x i x) }\end{array}$
a^{x+y+z}
(2) 3^{10}
(3) 2
(4) 2
(5) 1
(6) (i) true (2+11=13) (ii) false (iii) true (iv) true (v) false (vi) fasle (vii) true

Exercise - 3

(i) $3.84 \times 10^{8} m$ (ii) 1.2×10^{10}
(iii) $3 \times 10^{20} \mathrm{~m}$ (iv) $1.353 \times 10^{9} \mathrm{~km}^{3}$

12-Quadrilaterlals

Exercise - 1

(1) (i) Sides: $\overline{\mathrm{PQ}}, \overline{\mathrm{QR}}, \overline{\mathrm{RS}}, \overline{\mathrm{SP}}$ Angles: $\angle \mathrm{SPQ}, \angle \mathrm{PQR}, \angle \mathrm{QRS}, \angle \mathrm{RSP}$

Vertices: $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ diagnals: $\overline{\mathrm{PR}}, \overline{\mathrm{QS}}$
(ii) Pairs of adjacent sides $\overline{\mathrm{PQ}}, \overline{\mathrm{QR}} ; \overline{\mathrm{QR}}, \overline{\mathrm{RS}} ; \overline{\mathrm{RS}}, \overline{\mathrm{SP}}$ and $\overline{\mathrm{SP}}, \overline{\mathrm{PQ}}$

Pairs of adjacent angles: $\angle \mathrm{SPR}, \angle \mathrm{RSP} ; \angle \mathrm{RSP}, \angle \mathrm{QRS} ; \angle \mathrm{QRS}, \angle \mathrm{PQR}$ and $\angle \mathrm{PQR}, \angle \mathrm{SPQ}$
（v）$-5 x^{2}+3 x+10$（vi） $2 x^{2}-2 x y-5 y^{2}$（vii） $3 m^{3}+4 m^{2}+7 m-7$
（6） $7 x^{2}+x y-6 y^{2}$
（7） $4 x^{2}-3 x-2$
（8） $4 x^{2}-3 y^{2}-x y$
（9） $2 a^{2}+14 a+5$
（10）
（i） $22 x^{2}+12 y^{2}+8 x y$
（ii）$-14 x^{2}-10 y^{2}-20 x y$ or $-\left(14 x^{2}+10 y^{2}+20 \mathrm{xy}\right)$
（iii） $20 x^{2}+5 y^{2}-4 x y$
（iv）$-8 y^{2}-32 x^{2}-30 x y$
1.
（i） $3 \times 3 \times 3 \times 3$
（ii） $7 \times x \times 7 \times x$
（iii） $5 \times 5 \times 5 \times \mathrm{a} \times \mathrm{a} \times \mathrm{a} \times \mathrm{b} \times \mathrm{b} \times \mathrm{b}$ 3 3 ＝U ا
$7 \mathrm{x}=$ ソしい； 2 ＝
$5 \mathrm{ab}=$ じい； $3=$ ت
（iv） $4 \times 4 \times 4 \times 4 \times 4 \times y \times y \times y \times y \times y$
2．（i） 7^{5}
（ii） $3^{3} \times 5^{4}$（iii） $2^{3} \times 4^{4} \times 5^{3}$ $4 y=$ じい； 5 ＝
3.
（i） $2^{5} \times 3^{2}$
（ii） 2×5^{4}
（iii） $2 \times 3^{2} \times 5^{3}$
（iv） $2^{4} \times 3^{2} \times 5^{2}$
（v） $2^{5} \times 3 \times 5^{2}$
4.
（i） 3^{2}
（ii） 3^{5}
（iii） 2^{8}
5．（1） 17
（ii） 31
（iii） 25
（iv） 1
（1）
（i） 2^{14}
（ii） 3^{10}
（iii） 5^{5}
（iv） 9^{30}
（v）$\left(\frac{3}{5}\right)^{15}$
（vi） 3^{20}
（vii） 3^{4}
（viii） 6^{4}
（ix） $2^{9 a}$
（x） 10^{6}
（xi）$\left(\frac{-5}{6}\right)^{10}=\frac{-5^{10}}{6^{10}}=\frac{5^{10}}{6^{10}}$
$\begin{array}{llllll}\text {（xii）} 2^{10 a+10} & \text {（xiii）} \frac{2^{5}}{3^{5}} & \text {（xiv）} 15^{3} & \text {（xv）}(-4)^{3} & \text {（xvi）} \frac{1}{9^{8}} & \text {（xvii）} \frac{1}{(-6)^{4}}\end{array}$
（xviii）$(-7)^{15} \quad(x i x)(-6)^{16} \quad$（xix） a^{x+y+z}
（2） 3^{10}
（3） 2
（4） 2 （5） 1
（6）
（i） 0 ） $2+11=13)$
（ii） ；6（iii）（iv）（v） \qquad مــرت（vi）（vi）
（i） $3.84 \subset 10^{8} m$
（ii） 1.2×10^{10}
（iii） $3 \times 10^{20} \mathrm{~m}$
（iv） $1.353 \times 10^{9} \mathrm{~km}^{3}$

－ 12

مشت 1
（1）（i）\quad اض $\overline{\mathrm{PQ}}, \overline{\mathrm{QR}}, \overline{\mathrm{RS}}, \overline{S P} \quad \angle \mathrm{SPQ} \angle \mathrm{PQR} \angle \mathrm{QRS} \angle \mathrm{RSP}$ راس P，Q，R，S و $\quad \overline{\mathrm{PR}}, \overline{\mathrm{QS}}$

 and $\angle \mathrm{PQR}, \angle \mathrm{SPQ}$

Pairs of opposite sides: $\overline{\mathrm{PS}}, \overline{\mathrm{QR}}$ and $\overline{\mathrm{QP}}, \overline{\mathrm{RS}}$
Pairs of opposite angles: $\angle \mathrm{SPQ}, \angle \mathrm{QRS}$ and $\angle \mathrm{RSP}, \angle \mathrm{PQR}$
(2) 100°
(3) $48^{\circ}, 72^{\circ}, 96^{\circ}, 144^{\circ}$
(4) $90^{\circ}, 90^{\circ}, 90^{\circ}, 90^{\circ}$
(5) $75^{\circ}, 85^{\circ}, 95^{\circ}, 105^{\circ}$
(6) Angle of the quadrilateral cannot be 180°

Exercise - 2

(1) (i) false (ii) true (iii) true (iv) false (v) false (vi) true (vii) true (viii) true
(2)
(i) Since it has 4 sides
(ii) Since opposite sides in a square are parallel
(iii) Since diagonals of a square are perpendicular bisectors
(iv) Since opposite sides of a square are of equal length.
(3) $\angle \mathrm{DAB}=140^{\circ}, \angle \mathrm{BCD}=140^{\circ}, \angle \mathrm{CDA}=40^{\circ}$
(4) $50^{\circ}, 130^{\circ}, 50^{\circ}, 130^{\circ}$
(5) It has 4 sides and one pair of parallel sides; EA, DR
(6) 1
(7) Opposite angles are not equal.
(8) $15 \mathrm{~cm}, 9 \mathrm{~cm}, 15 \mathrm{~cm}, 9 \mathrm{~cm}$
(9) No, Rhombus should have equal length of sides
(10) $\angle C=150^{\circ}, \angle D=150^{\circ}$
(11) (i) Rhombus
(ii) Squarare
(iii) $180^{\circ}-x^{\circ}$
(iv) equal/congruent
(v) 10
(vi) 90°
(vii) 0
(viii) 10
(ix) 45

13 - Area and Perimeter

Exercise - 1

(1) $2(l+b) ; \mathrm{a}^{2}$
(2) $60 \mathrm{~cm} ; 22 \mathrm{~cm} ; 484 \mathrm{~cm}^{2}(3$
$280 \mathrm{~cm}^{2} ; 68 \mathrm{~cm} ; 18 \mathrm{~cm} ; 216 \mathrm{~cm}^{2} ; 10 \mathrm{~cm} ; 50 \mathrm{~cm}$

Exercise - 2

(1) (i) $28 \mathrm{~cm}^{2}$
(ii) $15 \mathrm{~cm}^{2}$
(iii) $38.76 \mathrm{~cm}^{2}$
(iv) $24 \mathrm{~cm}^{2}$
(2) (i) $91.2 \mathrm{~cm}^{2}$
(ii) 11.4 cm
(3) $42 \mathrm{~cm} ; 30 \mathrm{~cm}$
(4) $8 \mathrm{~cm} ; 24 \mathrm{~cm}$
(5) $30 \mathrm{~m}, 12 \mathrm{~m}$
(6) 80 m

(2) 100°
(3) $48^{\circ}, 72^{\circ}, 96^{\circ}, 144^{\circ}$
(4) $90^{\circ}, 90^{\circ}, 90^{\circ}, 90^{\circ}$
(5) $75^{\circ}, 85^{\circ}, 95^{\circ}, 105^{\circ}$

مشت 2

(iii) (ii)

(3) $\angle \mathrm{BAD}=140^{\circ}, \angle \mathrm{DCB}=140^{\circ}, \angle \mathrm{CDA}=40^{\circ}$
(4) $50^{\circ}, 130^{\circ}, 50^{\circ}, 130^{\circ}$
(5) (5)
$\overline{\mathrm{CA}}, \overline{\mathrm{DR}}$
(6) 1
(7) مثقا
(8) $15 \mathrm{~cm}, 9 \mathrm{~cm}, 15 \mathrm{~cm}, 9 \mathrm{~cm}$

(10) $\angle C=150^{\square}, \angle D=150$
(11) (i) \qquad
(ii)
(iii) $180^{\circ}-x^{\circ}$
(iv) (
(v) 10
(vi) 90°
(vii)(0) صز
(viii) 10
(ix) 45

(1) $2(1+b) ; a^{2}$
(2) $60 \mathrm{~cm} ; 22 \mathrm{~cm} ; 484 \mathrm{~cm}^{2}$
(3) $280 \mathrm{~cm}^{2} ; 68 \mathrm{~cm} ; 18 \mathrm{~cm} ; 216 \mathrm{~cm}^{2} ; 10 \mathrm{~cm} ; 50 \mathrm{~cm}$
(1) (i) $28 \mathrm{~cm}^{2}$
(ii) $15 \mathrm{~cm}^{2} \quad$ (iii) $38.76 \mathrm{~cm}^{2}$
(iv) $24 \mathrm{~cm}^{2}$ (2) (i) $91.2 \mathrm{~cm}^{2}$
(ii) 11.4 cm
(3) $42 \mathrm{~cm} ; 30 \mathrm{~cm}$
(4) $8 \mathrm{~cm} ; 24 \mathrm{~cm}$
(5) $30 \mathrm{~m}, 12 \mathrm{~m}$
(6) 80 m

Exercise - 3

(1) (i) $20 \mathrm{~cm}^{2}$
(ii) $12 \mathrm{~cm}^{2}$
(iii) $20.25 \mathrm{~cm}^{2}$
(iv) $12 \mathrm{~cm}^{2}$
(2) (i) $12 \mathrm{~cm}^{2}$
(ii) 3 cm
(3) $30 \mathrm{~cm}^{2} ; 4.62 \mathrm{~cm}$
(4) $27 \mathrm{~cm}^{2} ; 7.2 \mathrm{~cm}$
(5) $64 \mathrm{~cm}^{2} ;$ Yes; $\triangle \mathrm{BEC}, \triangle \mathrm{BAE}$ and $\triangle \mathrm{CDE}$ are three triangles drawn between the two parallel lines BC and $\mathrm{AD}, \mathrm{BC}=\mathrm{AE}+\mathrm{ED}$
(6) Ramu in $\triangle P Q R, P R$ is the base, because $Q S \perp P R$.
(7) 40 cm
(8) $20 \mathrm{~cm} ; 40 \mathrm{~cm}$
(9) 20 cm
(10) $800 \mathrm{~cm}^{2}$ (11) $160 \mathrm{~cm}^{2}$
(12) $192 \mathrm{~cm}^{2}$
(13) $18 \mathrm{~cm} ; 12 \mathrm{~cm}$

Exercise - 4

(1)
(i) $20 \mathrm{~cm}^{2}$
(ii) $24 \mathrm{~cm}^{2}$
(2) $96 \mathrm{~cm}^{2} ; 150 \mathrm{~mm}: 691.2 \mathrm{~m}^{2}$
(3) 18 cm
(4) ₹506.25

Exercise - 5

(1) (i) 220 cm
(ii) 26.4 cm
(iii) 96.8 cm
(2) (i) 55 m
(ii) 17.6 m
(iii) 15.4 m
(3)
(i) (a) 50.24 cm
(b) 94.2 cm
(c) 125.6 cm
(ii) 7 cm
(4) 42 cm
(5) 10.5 cm
(6) 3 times
(7) $3: 4$
(8) 1.75 cm
(9) 94.20 cm
(10) 39.25 cm

Exercise - 6

(1) $475 \mathrm{~m}^{2}$
(2) $195.5 \mathrm{~m}^{2} ; 29.5 \mathrm{~m}^{2}$
(3) $624 \mathrm{~m}^{2}$
(4) $68 \mathrm{~m}^{2}$
(5) $9900 \mathrm{~m}^{2} ; 200100 \mathrm{~m}^{2}$

14 - Understanding 3D and 2D Shapes

Exercise - 1

(1) Sphere: Foot ball, Cricket ball, Laddu

Cylinder: Drum, Biscuit pack, Log, Candle
Pyramid: Pyramid ; Cuboid: Match box, Brick, Biscuit pack
Cone: Ice-cream, Joker Cap ; Cube: Dice, Carton
(2) (i) Cone: Ice-cream, upper part of a funnel
(ii) Cube: Dice, Carton
(iii) Cuboid: Duster, Brick (iv) Sphere: Ball, Marble
(v) Cylinder: Pencil, Pype.
（1）（i） $20 \mathrm{~cm}^{2}$
（ii） $12 \mathrm{~cm}^{2}$
（iii） $20.25 \mathrm{~cm}^{2}$
（iv） $12 \mathrm{~cm}^{2}$
（2）（i） $12 \mathrm{~cm}^{2}$
（ii） 3 cm
（3） $30 \mathrm{~cm}^{2} ; 4.62 \mathrm{~cm}$
（4） $27 \mathrm{~cm}^{2} ; 7.2 \mathrm{~cm}$（5） 64 ール゙ーでー
（5）إـ $\mathrm{BC}=\mathrm{AE}+\mathrm{ED}$

（7） 40 cm
（8） 20 cm ；40 cm
（9） 20 cm
（10） $800 \mathrm{~cm}^{2}$
（11） $160 \mathrm{~cm}^{2}$
（12） $192 \mathrm{~cm}^{2}$
（13） $18 \mathrm{~cm} ; 12 \mathrm{~cm}$

مشت 4
（1）（i） $20 \mathrm{~cm}^{2}$
（ii） $24 \mathrm{~cm}^{2}$
（2） $96 \mathrm{~cm}^{2} ; 150 \mathrm{~mm}: 691.2 \mathrm{~m}^{2}$
（3） 18 cm
（4）₹506．25

مشت 5

（1）（i） 220 cm
（ii） 26.4 cm
（iii） 96.8 cm
（2）（i） 55 m
（ii） 17.6 m
（iii） 15.4 m
（3）（i）（a） 50.24 cm
（b） 94.2 cm
（c） 1256 cm
（ii） 7 cm
（4） 42 cm
（5） 10.5 cm
（6）
（7） $3 \pi: 2 \pi$
（8） 1.75 cm
（9） 94.20 cm
（10） 39.25 cm

مشت 6

（1） $475 \mathrm{~m}^{2}$
（2） $195.5 \mathrm{~m}^{2}$
$29.5 \mathrm{~cm}(3) 624 \mathrm{~m}^{2}$
（4） $68 \mathrm{~m}^{2}$
（5） $9900 \mathrm{~m}^{2} \quad ; 200100 \mathrm{~m}^{2}$

كر:--نطبال،كركطبال،لو,
（1）
（2）
（i）（i）
（ii）كعب：－انـر
（iii）（i）

(3)

Faces	6	6	5
Edges	12	12	8
Vertices	8	8	5

Exercise - 2

(1) Do activity
(2) i) C
ii) a
(3)

Exercise - 4

(1) A ball : a circle.

A Cylindrical pipe : a rectangle.
A book : a rectangle.
(2) (i) Spherical / Circular objects
(ii) Cube / Square sheets
(iii) Triangular shapes or Right prism with triangular base.
(iv) Cylinder / Rectangle sheets.

15-Symmetry

Exercise 1

(i)

(ii)

(iv)

(v)
(vi)

(vii)

(viii)

(ix)

(xii)

(xvi)

(xvii)

(xviii)

(xix)

(xiii) (xiv)

(xv)

(xxiii)
(3)

	6ram.	6r8.	\%
己',	6	6	5
-	12	12	8
-1	8	8	5

(2) i) C ii) a (3)

مشت 4

اكيكّ با
(2) (i) (ii
(ii) كمب/م نعنا
(iii) بثخثنا
(iv) استوان/\%تطين نماثيت

(i)

(ii)

(iv)

(v)

(vii)

(viii)

(ix)

(x)

(xii)

(xiii)

(xiv)

(xvi)

(xvii)

(xviii)

(xix)

(xx)

(xxi)

(xxiii)

(i)

(ii)

(iii)

(v)

(vi)

(vii)

(viii)

(ix)
(2)

(i)

(ii)

(iii)

(ix)
(3)

(i)

(ii)

(iii)

(iv)

(v)

(vi)
(4)
(i) False (ii) True
(iii) False
(5) Angle between successive axes $=360 / 2 \mathrm{n}=360 / 2 \mathrm{x} 4=360 / 8=45^{\circ}$

This is true for all regular polygons

Exercise 3

1. Figures i, ii, iv and v have rotational symmetry.
2.

(i) 2
(ii) 4
(iii) 3
(iv) 4
(v) $4 \quad$ (vi) 5
(vii) 6 (viii) 3
3. Square
yes
90°
4
Rectangle
yes
180°
180^{0}
2
Rhombus
yes
120^{0}
2
Equilateral Triangle
yes
60^{0}
3
Regular Hexagon
yes
Circle
yes
Semi-circle
No
infinity
infinity

Exercise 4

1. S No 0 Yes 2

H Yes 2 Yes 2
O Yes 2 Yes 2
$\mathrm{N} \quad$ No 0 Yes 2
C Yes 1 No 1

（i）

（ii）

（iii）

（v）

（vi）

（vii）

（viii）

（ix）
（2）

（i）

（ii）

（iii）

（ix）
（3）

（i）

（ii）

（iii）

（iv）

（v）

（vi）
（4）（i）- ． 6
（ii）
（iii）－${ }^{\text {G }}$

层

2.
（i） 2
（ii） 4
（iii） 3
（iv） 4
（v） 4
（vi） 5
（vii） 6 （viii） 3

90°	4
180°	2
180°	2
120°	3
60°	6
にばリ リ リ リ	-
-	-

3.

INSTRUCTIONS TO TEACHERS

Dear Teachers!!

Greetings and a hearty welcome to the newly developed textbook Mathematics for class VII.

- The present textbook is developed as per the syllabus and Academic standards conceived by the mathematics position paper prepared based on SCF - 2011 and RTE - 2009 for Upper Primary stage of education.
- The new textbook constitutes 15 chapters with concepts from the main branches of mathematics like Arithemetics, Algebra, Geometry, Mensuration and Statistics.
- These chapters emphasize the prescribed academic standards in achieving the skills like Problem Solving, Reasoning-proof, Communication, Connectivity and representation. The staratagies in building a chapter are observation of patterns, making generalization through deductive, inductive and logical thinking, exploring different methods for problem solving, questioning, interaction and the utilization of the same in daily life.
- The situations, examples and activities given in the textbook are based on the competencies acquired by the child at Primary Stage. So the child participates actively in all the classroom interactions and enjoys learning of Mathematics.
- Primary objective of a teacher is to achieve the "Academic standards" by involving students in the discussions and activities suggested in the textbook and making them to learn the concepts.
- Mere completion of a chapter by the teacher doesn't make any sense. The exhibition of prescribed academic standards by the student only ensures the completion of the chapter.
- Students are to be encouraged to answer the questions given in the chapters. These questions help to improve logical, inductive and deductive thinking of the child.
- Understanding and generalization of properties are essential. Student first finds the need and then proceeds to understand, followed by solving similar problems on his own and then generalises the facts. The strategy in the presentation of concepts followed.
- Clear illustrations and suitable pictures are given wherever it was found connection and corrects the misconnection necessary.
- Exercises of 'Do This' and 'Try This' are given extensively after completion of each concept. Exercises given under 'Do This' are based on the concept taught. After teaching of two or three concepts some exercises are given based on them. Questions given under 'Try This' are intended to test the skills of generalization of facts, ensuring correctness of statements, questioning etc., 'Do This' exercise and other exercises given are supposed to be done by students on their own. This process helps the teacher to know how far the students can fare with the concepts they have learnt. Teacher may assist in solving problem given in 'Try This' sections.
- Students should be made to digest the concepts given in "looking back" completely. The next chapter is to be taken up by the teacher only after satisfactory performance by the students in accordance with the academic standards designated for them (given at the end).
- Teacher may prepare his own problems related to the concepts besides solving the problems given in the exercises. Moreover students should be encouraged to identify problems from day- to-day life or create their own.
- Above all the teacher should first study the textbook completely thoroughly and critically. All the given problems should be solved by the teacher well before the classroom teaching.
- Teaching learning strategies and the expected learning outcomes, have been developed class wise and subject-wise based on the syllabus and compiled in the form of a Hand book to guide the teachers and were supplied to all the schools. With the help of this Hand book the teachers are expected to conduct effective teaching learning processes and ensure that all the students attain the expected learning outcomes.

 - احتاورثاريات وزيره-

 ; ${ }^{\text {¢ }}$

Syllabus

Number System (50 hrs) 1. Integers 2. Fractions, Decimals \& Rational Numbers		Integers - Multiplication and division of integers (through patterns). - Properties of integers (including identities for addition \& multiplication (closure, commutative, associative, inverse, distributive) (through patterns). (examples from whole numbers as well). Expressing propertie in a general form. Construction of counter examples, (eg. subtraction is not commutative). - Word problems involvingintegers (all operations) Fractions, Decimals and rationalnumbers: - Multiplication of fractions - Fraction as an operator "of" - Reciprocal of a fraction and its use - Division of fractions - Word problems involving mixed fractions (related to daily life) - Introduction to rational numbers (with representation on number line) - Difference between fraction and rational numbers. - Representation of rationalnumber as a decimal. - Word problems on rationalnumbers (all operations) - Multiplication and division of decimal fractions - Conversion of units (length \& mass) - Word problems (including all operations)
Algebra (20 hrs) 11. Exponents 10. Algebraic Expressions 3. Simple Equations		Exponents and powersIntroduction Meaning of x in a^{x} where $\mathrm{a} \dot{\varepsilon} \mathrm{Z}$ - Laws of exponents (throughobserving patterns to arrive at5 generalization.)whereM, $n \in N(i) a^{m} a^{n}=a^{m ?+n}(i i) ?\left(a^{m}\right)^{? n}=a^{m n}(i i i) a^{m} / a^{n}=$ $\mathrm{a}^{\mathrm{m}-\mathrm{n}}$, where $(\mathrm{m}-\mathrm{n}) \in \mathrm{N}(\mathrm{iv}) \mathrm{a}^{\mathrm{m}} \cdot \mathrm{b}^{\mathrm{m}}=(\mathrm{ab})^{\mathrm{m}}(\mathrm{v})$ number with exponent zerovi)Decimal number in exponential notation vii) Expressing large number in standard form (Scientific Notation)
		ALGEBRAIC EXPRESSIONSIntroduction Generate algebraic expressions(simple) involving one or two variables - Identifying constants, coefficient, powers - Like and unlike terms, degree of expressions e.g., $x^{2} y$ etc.(exponentd"?3, number of variables d"?2) - Addition, subtraction of algebraic expressions (coefficients should be integers).
		Simple equations - Simple linear equations in one variable (in contextual problems) with two operations (integers as coefficients)
6. Ratio - Applications (20 hrs)		- Ratio and proportion (revision) - Unitary method continued, consolidation, generalexpression. - Compound ratio : simple word problems - Percentage- an introduction - Understanding percentage as a fraction with denominator 100 - Converting fractions anddecimals into percentage andvice-versa. - Application to profit and loss (single transaction only) - Application to simple interest (time period in complete years).

－	
（i） （ كوياءاءثارياورناقتاعارا كr 祘 	
 （ ${ }^{\text {ق }}$ （ii） $\left.\mathrm{a}^{m}\right)^{n}=\mathrm{a}^{m n} \quad$（i） $\mathrm{a}^{m} \mathrm{a}^{n}{ }^{n} \mathrm{a}^{m+n} \quad(\mathrm{~m}, \mathrm{n} \in \mathrm{N}) \cup!?$ （iv） $\mathrm{a}^{m} \mathrm{~b}^{m}=(\mathrm{ab})^{m}\left(\right.$（iii）$\frac{\mathrm{a}^{m}}{\mathrm{a}^{n}}=\mathrm{a}^{m-n} \quad((\mathrm{~m}-\mathrm{n}) \in \mathrm{N})$ （v） （ii） ن	البجراء（20 عُمث） ． 11 10．الجركوبارتّ ． 5
） （\％）	
（1） ． 放 （2）（2）	ينصاوراك6اطلات （这20）
233	

Understanding shapes / Geometry 4. Lines and	(i) Lines and Angles: - Pairs of angles (linear,supplementary, complementary,adjacent, vertically opposite)(verification and simple proofof vertically opposite angles) - Properties of parallel lines withtransversal (alternate,corresponding interior, exteriorangles)
4. Lines and Angles	(ii) Triangles:
5. Triangle and	- Definition
	- Types of triangles
8.Congurencey	- Properties of triangles
	- Sum of the sides, diffe
9.Construction of Triangles 12. Quadrilateral 15. Symmetry 14. Understanding 3D and 2D Shapes	- Angle sum property (with notion of proof and verification through paper folding, proofs, using property of parallel lines, difference between proof and verification - Exterior angle property of triangle
	(iii) Congruence: - congruence through superposition ex. Blades, stamps etc.. - Extend congruence to simple geometrical shapes ex. Triange , circles, - criteria of congruence (by verification only) - property of congruencies of triangles SAS, SSS, ASA, RHS Properties with figures•
	(iv) Construction of triangles (all models) - Constructing a triangles when the lengths of its 3 sides are known (SSS criterion) - Constructing a triangle when the lengths of 2 sides and the measure of the angle between them are known (SAS criterion) - Constructing a triangle when the measures of 2 of its angles and length of the side included between them is given (ASA criterion) - Constructing a right angled triangle when the length of one leg and its hypotenuse are given (RHS criterion)
	(v) QuadrilateralsQuadrilateral-definition. - Quadrilateral, sides, angles, diagonals. - Interior, exterior of quadrilateral - Convex, concave quadrilateral differences with diagrams - Sum angles property (By verification), problems - Types of quadrilaterals - Properties of parallelogram, trapezium, rhombus, rectangle, square and kite.
	(vi) Symmetry - Recalling reflection symmetry - Idea of rotational symmetry,observations of rotationalsymmetry of 2-D objects. $(900,1200,1800)$ - Operation of rotation through 900 and 1800 of simple figures. - Examples offigures with bothrotation and reflection symmetry(bothoperations) - Examples of figures that havereflection and rotation symmetryand viceversa

Mensuration
(15 hrs)
13. Area and
Perimeter

(vii) Understanding 3-D and 2-D Shapes:

- Drawing 3-D figures in 2-Dshowing hidden faces.
- Identification and counting ofvertices, edges, faces, nets (forcubes cuboids, and cylinders,cones).
- Matching pictures with objects(Identifying names)

Area and Perimeter

- Revision of perimeter and Area of Rectangle, Square.
- Idea of Circumference of Circle.
- Area of a triangle, parallelogram, rhombus and rectangular paths.

7. Data
Handling
(15 hrs)

Data Handling

- Collection and organisation ofdata
- Mean, median and mode ofungrouped data - understandingwhat they represent.Reading bar-graphs
- Constructing double bar graphs
- Simple pie charts with reasonable data numbers

2D(vii) ثا رتجاوراطاط, (Area and Permimeter) 放 عراس	13.رجّإوراطط.
 * 	7

Academic Standards

CONTENT

ACADEMIC STANDARDS

Number system 1. Integers	Problem -Solves the problems involving four fundamental operations of integers Solving: -Solves the word problems involving the integers. - Used brackets for solving problems to simplify numerica statements.
	Reasoning - Proof: Explains why the division by zero is meaning less Differentiates and compares the set of Natural number with integers. Gives examples and counter examples to the numbe properties such as closure, Commutative, Associative etc.
	Communication:• Expressing the number properties of integers in genera form. - Uses the negative symbol in different contexts.
	Connections: - Finds the usage of integers from their daily life situations Understands the relation among N, W and Z.
	Representation:- Represents the integers on number line. Performs the operations of integers on the number line.
2. Fractions, Decimals and Rationa numbers	Problem - Solves the problems in all operation of fractions. Solving: - Solves the word problems of all operations of rational numbers. - Solves the problems of all operations of decimal fractions - Converts the small units into large units and vice versa.
	Reasoning: and Proof - Differentiates rationalnumbers with fractions.
	Communication:• Expresses the need of set of rational numbers Expresses the properties of rational numbers in genera form
	Connections: - Finds the usage of / inter relation among fractions, rational numbers, and decimal numbers.
	Representation:• Represents rational numbers on the number line. - Represents the rational numbers in decimal form.
$\begin{array}{\|l\|} \hline \hline \text { Algebra: } \\ \text { 11. Exponent } \$ \\ \text { and powers } \end{array}$	Problem - Writes the large numbers in exponential form by using Solving: prime factorization
	Reasoning: Generalizes the exponentiallaws through the and Proof observation of patterns
	Communication:• Understands the meaning of x in a^{x} where $\mathrm{a} € \mathrm{z}$. - Uses of exponential form when using large numbers

تدريهـــى هـعيارات Academic Standards

شض

ربط／تقات：－
行

院
约
چڭ

ربط／تلق：－－
نَاْنقى：－－

11．قوتما：－
$a \in Z \cup$ انظهار：－
共

$v: *$
\qquad

Connections:	- Uses prime factorization in expression of large numbers in exponential form
Representation:•	Expresses the large numbers in standard form
Problem	- Finds the degree of algebraic expressions
Solving	- -(Co-efficient should be integers) Solves the word problems involving two operations (Which can be expressed as simple equation and single variable)
Reasoning and Proof	- Generates algebraic expressions involving one or two variables by using the patters

Communication:- Writes the standard form of first, second, third order expressions in one or two variables

- Converts the daily life problems into simple equations (Contains one variable only)
Connections: - Uses closure, commutative etc. properties in addition and subtraction of algebraic expressions.
- Uses solving simple equations in daily life situations.

Representation:• Represents algebraic expressions in standard forms

Problem	-
Solving the compound, inverse ratio of 2 ratios	
	-
	Solves word problems involving unitary methods
	- Solves word problems involving percentage concept
	Solves word problems to find simple interest (Time
	period in complete years)

Reasoning • Compares the decimals, converting into percentages and and Proof vice versa.

- Formulates the general principles of ratios and proportions
Communication: - Expresses the fractions into percentages and decima forms and their usage.
Connections: - Uses profit and loss concepts in daily life situations (Single transactions only)
- Understands and uses the solutions for percentage problems in daily life.
Representation: - Converts fractions and decimals into percentage form and vice versa.

ربر／（قالت：－ U نَا	
 （ 析 （：（ج） 行 （آيّ＂ 人浣	10．الجبرىبعاريّن： 3
هتركاو1：－㢄 ربط／تقات：－ ：نانیز：－－	6．يّساوراك6اطلات

9. Construction of Triangles	Problem $\quad \bullet$ Construct triangles using given measurements. Solving
	Reasoning and proof
	Communication:
	Connections: •
	Representation:
$\begin{array}{\|c\|} \text { 12.Quardila- } \\ \text { teral } \end{array}$	
	Reasoning and proof - Differentiates the convex, concave quadrilaterals. - Verifies and justifies the sum angle property of quadrilaterals.
	Communication: • Explains the inter relationship between triangle and quadrilateral. - Explains the different types quadrilaterals based on their properties.
	Connections: - Tries to define the quadrilateral. - Classifies the given quadrilaterals using their properties and thel
	Representation:•
15.Symmetry	Problem Solving\quad Rotate the figure and find its angular symmetry.
	Reasoning and proof - Can differentiate linear and reflection symmetry using objectives or figures.
	Communication: • Gives examples that have reflection symmetry.
	Connections: •
	Representation: ${ }^{\text {- }}$

بتَ ا－تصلالثبوت：－－ انظبار：－ ربط／＂قلز：－ 	9 ．ـثـثـت Construction of －：Triangles
اترلانثبوت：－ 祘 انظبار：－领 	$\begin{array}{r} \text { Quadrilateral } \\ \text { پضلى } \end{array}$
放 ستلر6ول：－ استخلالثوت：－ ربط／تلقن：－ 	$\begin{array}{r} \text { 15. تشاك -Symmetry } \end{array}$

$\begin{array}{\|c} \hline \text { 14. Unders- } \\ \text { tanding } \\ \text { 3-D and } \\ \text { 2-D } \\ \text { shapes } \end{array}$	Problem Solving	- Identifying and counting of faces, Edges, Vertices, nets for 3D Fig (Cube, Cuboid, Cone, Cylender).
	Reasoning and proof	- Matches picture with 3-D objects and visualize fells the Faces, Edges, Vertices etc.
	Communication: $\bullet \square$	
	Connections: -	
	Representation:• Can draw simple 3-D shapes in to 2-D figures.	
Mensuration 13. Area and Perimeter$\|$	Problem Solving - Solves the problem of Area and perimeter for square, rectangle, parallelogram, triangle and Rhombus shapes of things.	
	Reasoning and Proof Understands the relationship between square, Rectangle, Parallelogram with triangle shapes for finding the area of triangle. - Understands the Area of Rhombus by using area of triangles.	
	Communication:• Explains the concept of Measurement using a basic unit.	
	Connections: Applies the concept of Area perimeter to find the daily life situation problems (Square, Rectangle, Parallelogram, Triangle, Rhombus and Circle) - Applies the concept of area of Rectangle, Circle. - Finds the area of the rectangular paths, Circular paths.	
	Representation:॰ Represent word problems as figures.	
7. Data Handling	Problem - Organization of raw data into classified data. Solving Solves the problems for finding the Mean, Medium, Mode of ungrouped data	
	Reasoning - Understands the Mean, Mode and Medium of ungrouped data and what they represent.	
	Communication: - Explains the Mean, Mode and Medium for ungrouped data.	
	Connections: - Understands the usage of Mean, Mode and Medium in daily life situation problems. Understands the usage of double graphs and pie graphs in daily life situation (Year wise population, Budget, Production of crops etc.)	
	Representation:• Representation of Mean, Medium and Mode for ungrouped data. - Representation of the data in to double bar graphs and pie graphs.	
Free distribution of Govt. of Telangana 2022-23		

	3D 2D ． 14 －
 اتصلالثبوت：－ 约 نيارىاكَ اظظبار：－ 號 روز ＊ نما	13． 13 ：（Mensuration） رقباوراحاط：－
 额 ا－ترلالثوت：－ ثه اظظبار：－ 放 ربط／تكلن：－ 放	7.7 Data －：Handling

LEARNING OUTCOMES

MATHIEMAATICS

CLASS 7

The learner....

- Solves problems involving four fundamental operations on integers.
- Solves problems related to daily life situations involving fractions, rational numbers and decimals.
- Uses exponential form of the numbers to simplify problems involving multiplication and division of large numbers.
- Solves problems in daily life related to profit-loss, interest by using percentage and ratio.
- Solves problems in daily life involving linear equations in one variable.
- Demonstrates the types of angles formed by intersections of any two lines.
- Explains the properties of angles formed in and outside of a triangle.
- Explains congruency of triangles on the basis of the information given about them(like SSS, SAS, ASA, RHS).
Using ruler and a pair of compasses constructs triangles with given measurements.
Finds the areas of parallelogram, triangle, and rhombus.
Estimates the value of pi.
Calculates mean, median and mode of the ungrouped data of daily life.
Identifies 3D shapes like sphere, cube, cuboids, cylinder and cone in real life situations and prepares net shapes to them.
Explains line symmetry, rotational symmetry and point symmetry.

